Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hyun mau
Xem chi tiết
Trần Thị Loan
8 tháng 3 2015 lúc 23:25

vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)

=>(a+b+c)(bc+ac+ab) - abc = 0

=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0

=> a2(b+c) +  (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0 

=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0

Nếu b+c = 0 => a = 2008

nếu a+ b = 0 => c = 2008

Nếu a+c = 0 => b = 2008

Vậy....

Trang Lee
19 tháng 3 2015 lúc 20:58

Trần Thị Loan : tại sao a+b+c = 2008  và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008};a+b+c=2008\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ac}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Nếu \(a+b=0\Rightarrow c=2008\)

       \(b+c=0\Rightarrow a=2008\)

       \(c+a=0\Rightarrow b=2008\)

Vậy 1 trong ba số bằng 2008

Trang Lee
Xem chi tiết
Trang Lee
20 tháng 3 2015 lúc 20:23

uk` , mình nhìn thấy rồi ♥

Nguyễn Linh Chi
22 tháng 9 2019 lúc 22:30

Em tham khảo cách làm tương tự như link bên dưới nhé!

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

Đoàn Thị Như Thảo
Xem chi tiết
kimochi
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
15 tháng 9 2019 lúc 20:33

\(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2008\)

\(\Rightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)

\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left[b\left(a+c\right)+a\left(a+c\right)\right]\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\)Hoặc a + b = 0 hoặc b + c = 0 hoặc a + c = 0 

Vậy 1 trong 3 số bằng 2008 (đpcm)

kimochi
15 tháng 9 2019 lúc 20:53

Cảm ơn bạn đã giúp mình nhưng bạn bị nhầm 2 dòng đầu . Mình sửa lại cho bạn 2 dòng đầu như sau:

      \(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008}\) ;

    \(\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Tụ
Xem chi tiết
vân phạm
Xem chi tiết
Nguyễn Hữu Hưng
Xem chi tiết
Feliks Zemdegs
5 tháng 11 2015 lúc 16:17

Vào đây nhé: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Vũ Thị Nhung
Xem chi tiết
Nguyễn Thành Trương
24 tháng 2 2019 lúc 19:34

225 là số lẻ nên $2008a+3b+1$ và $2008^a+2008a+b$ là số lẻ.

+ Nếu $a \neq 0$ thì $2008^a+2008a$ nhận giá trị là 1 số chẵn. Để $2008^a+2008a+b$ nhận giá trị lẻ thì b nhận giá trị lẻ
$ \Longrightarrow 3b$ nhận giá trị lẻ
$ \Longrightarrow 2008a+ 3b+1$ nhận giá trị chẵn (vô lí)

+ Nếu a=0 thay vào ta có:
$(2008.0+3b+1)(2008^0+2008.0+b)=225$
$ \Longrightarrow (3b+1)(1+b)=225=225.1=75.3=45.5=25.9=15.15$

+ Ta có b là STN nên 3b+1>b+1 và 3b+1 chia 3 dư 1. Như vậy 3b+1=25; b+1=9
$ \Longrightarrow b=8$

Vậy a=0; b=8

jksadsas
Xem chi tiết