cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Chứng minh rằng ít nhất 1 trong 3 số a,b,c là bình phương của 1 số hữu tỉ
cho biểu thức \(A=\left(a^{2012}+b^{2012}+c^{2012}\right)-\left(a^{2008}+b^{2008}+c^{2008}\right)\)vs a,b,c là các số nguyên dương . CM A chia hết cho 30
Cho các số a,b,c thỏa mãn điều kiện: a2+b2+c2=1 và a3+b3+c3=1.
Tính giá trị của biểu thức: S=a2+b9+c1945
Cho các số thực a,b,c đôi một khác nhau thỏa mãn \(\left(a-b\right)\sqrt[3]{1-c^3}+\left(b-c\right)\sqrt[3]{1-a^3}+\left(c-a\right)\sqrt[3]{1-b^3}=0\)
Chứng minh rằng \(\sqrt[3]{\left(1-a^3\right)\left(1-b^3\right)\left(1-c^3\right)}+abc=1\)
Cho a,b,c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).Chứng minh rằng: \(a.b^2.c^3\le1\)
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
bài 1:Chứng tỏ rằng:
a) a = 20053 - 1 chia hết cho 2004
b) b= 20053+125 chia hết cho 2010
bài 2: Chứng tỏ rằng:
a) P = x6+1 chia hết cho x2+1
b) Q = x6-y6 chia hết cho x-y và chia hết cho x+y
bài 3: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 4: tìm cặp số (x,y) thỏa mãn đẳng thức:
( 2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32
giúp mình với,mk cảm ơn.
Giúp mình với ạ...Cảm ơn ạ...
1)phân tích thành nhân tử:
a) (2a+3)x-(2a+3)y+(2a+3) b) (a-b)x+(b-a)y-a+b
c) (4x-y) (a+b)+(4x-y)(c-1) d) (a+b-c)x^2-(c-a-b)x
2)tìm các cặp số (x,y) thỏa mẫn điều kiện sau: x(y+1)-y=1
Cho 3 số thực khác nhau và khác 0 là a,b,c thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . Chứng ming :
\(\frac{bc-a^2}{a\left(bc-1\right)}=\frac{b^2-ac}{b\left(1-ac\right)}\)
@Lê Trịnh Việt Tiến GIẢI ĐI