cho tam giac abc can tai a. tren tia doi cua tia bc va cb lay theo thu tu hai diem q va r sao cho bq=cr
a, chung minh aq=ar
b, goi h la trung diem cua bc . chung minh goc qah= goc rah
giup mk vs
1) Cho △ABC can o A. Tren tia doi cua cac tia BC va CB lay thu tu hai diem F va E sao cho BF = CE
a) Chung minh: △AEF can
b) Goi M la trung diem cua BC. Chung minh AM la tia phan giac goc FAE
c) Tu B va C ke BH, CK theo thu tu vuong goc voi AF va AE ( H ∈ AF, K ∈ AE ). Chung minh BH = CK
Đăng vào phần lớp 8 ấy, thế này kh ai giải cho đâu.
a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABF}=\widehat{ACE}\)
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABF}=\widehat{ACE}\)(cmt)
BF=CE(gt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: AF=AE(Hai cạnh tương ứng)
Xét ΔAFE có AF=AE(Cmt)
nên ΔAFE cân tại A(Định nghĩa tam giác cân)
bài 1: Cho tam giac ABC co AB = AC. Goi H la trung diem cua BC. Tren tia doi cua
tia BC lay diem M va tren tia doi cua tia CB lay diem N sao cho MB = CN.
a) Chung minh rang: AABH = AACH
b) Chung minh rang: AH la tia phan giac cua goc BAC
c) Chung minh rang: AH 1 BC
d) Ching minh rang: AM = AN
e) Chung minh rang: H la trung diem cua MN
Tren nua mat phang bo MN khac phia voi A, lay diem E sao cho EM = EN.
Chung minh rang: A, H, E thang hang.
bài 2: Chung minh rang: "Trong mot tam giac vuong, canh doi dien voi goc 30 do se bang
nua canh canh huyen"
mong trả lời nhanh
cho tam giac nhon ABC, ve BD vuong goc AC tai D va CE vuong goc AB tai E. Cac duong thang BD va CE cat nhau tai H. Goi diem M la trung diem cua canh CB. Tren tia doi cua tia MH lay diem K sao cho MH=MK. a) chung minh: tam giac BMH=tam giac CMK, b) chung minh: CK vuong goc AC, c) ve HI vuong goc BC tai I, tren tia HI laydiem G sao cho HI=IG. Chung minh: GC=BK
cho tam giac abc can tai a goc a la gic tu,tren tia doi bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ce .tren tia doi ca lay diem i sao cho ci=ca.a) cm tam giac abd=tam giac ice.b)chung minh ab+ac<ad+ae.c)tu d va e ke duong thang vuong goc voi bc cat ab,ai theo thu tu mn .cm bm=cn.d)chung minh chu vi tam giac abc<chu vi tam giac amn
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
cho tam giac ABC. Goi M la trung diem BC va AM la tia phan giac cua goc A. Ve MI vuong goc AB, MH vuong goc AC. Chung minh rang:
a, MI = MH
b, Tam giac ABC can
c, Cho AB = 17 cm, AM = 15 cm. Tinh BC
d, Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE. Chung minh: tam giac AED can
cho tam giac abc can tai a. lay d tren bc , tren tia doi tia cb lay e sao cho ce=bd. cac duong thang vuong goc voi bc tai d va e lan luot cat cac duong thang ab va ac theo thu tu tai m va n. i la giao diem cu mn va bc. chung minh: a, i la trung diem cua mn
cho tam giac ABC co goc a nhon M la trung diem cua BC tren tia doi cua tia MA lay diem D sao cho MA=MD chung minh BAM=CDM chung minh AC=AD tren nua mat phang Bo AB ko chua C ve tia Ax vuong goc AB tren nua mat phang bo AC ko chua B ve tia Ay vuong goc AC tren tia Ax lay Diem P sao cho AP=AB tren tia Ay lay diem Q sao cho AQ=AC chung minh tam giac ABQ= tam giac APC goi giao diem cua DA va PQ la K chung minh AK vuong goc PQ
Cho tam giac ABC can tai A co goc A=40 do.Tren canh AB lay diem D,tren tia doi cua tia CA lay diem E sao cho BD=CE.Ke DH va EK cung vuong goc voi duong thang BC.(H,K thuoc BC)
1.Tinh goc B,goc C cua tam giac ABC
2.CM :DH=EK
3.Goi M la trung diem cua HK,chung minh M la trung diem cua DE
cho tam giac abc co AB<AB goi D,E,F lan luot la trung diem cua AB AC BC ke AH vuong goc voi BC tai H chung minh DM song song BH chung minh M la trung diem AH va tam giac EAH can tren tia doi cua DH lay diem k sao cho dh = dk chung minh tu giac defa la hinh thang can va tu giac kacb la hinh thang vuong