A = ( 3n+2015 )( 3n+2016 )
Chứng minh A chia hết cho 2
A = ( 3n + 2015)( 3n + 2016 )
Chứng minh chia hết cho 2
Cho A=(3n+2015)*(3n+2016)
Chứng minh chia hết cho 2
Vì ( 3n + 2015 ) và ( 3n + 2016 ) là 2 số tự nhiên liên tiếp nên 1 trong 2 số chia hết cho 2
Suy ra A chia hết cho 2
ta có 2 trường hợp
TH1 : nếu n lẻ => 3n lẻ => 3n+2015 chẵn => (3n+20150(3n+2016) chia hết cho 2
TH2 : nếu n chẵn =>3n chẵn => 3n+2016 chẵn => (3n+2015)(3n+2016) chia hết cho 2
tk nha bạn
thank you bạn
(^_^)
A=(3n + 2015)(3n + 2016) với n thuộc N. chứng minh A chia hết cho 2
Nếu n = 2k (k thuộc N)=> 3n+2016 = 3.2k+2016 = 6k+2016 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Nếu n=2k+1(k thuộc N) => 3n+2015=3(2k+1)+2015=6k+2018 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Vậy...
với n thuộc N
\(\Rightarrow\)( 3n + 2015 ) ( 3n + 2016 ) là 2 số liên tiếp
\(\Rightarrow\)(3n + 2016 ) ( 3n + 2016 ) chia hết cho 2
(giả sử ( 3n + 2015 ) là chẵn thì ( 3n + 2016 ) là lẻ
Cho A=(3n + 2015)*(3n+2016)với n thuộc N chứng tỏ A chia hết cho 2
Ta có hai trường hợp :
TH1 : nếu n lẻ => 3n lẻ => 3n + 2015 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
TH2 : nêu n chẵn => 3n chẵn => 3n + 2016 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
Với n thuộc N thì A=(3n+2015)(3n+2016) là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
(Có thể xét 2 th n là số chẵn và n là số lẻ để chứng minh)
câu 1: Tìm n ∈ N sao cho
42013 +42013+42013+42013=4n
câu 2: Cho A = (3n+2015)(3n+2016) với n ∈ N . Hãy chứng minh : A chia hết cho 2.
Câu 1:
\(\Leftrightarrow4\cdot4^{2013}=4^n\)
=>4^n=4^2014
=>n=2014
Cho A=(3n+2015)(3n+2016) với n€N. Hãy chứng minh A chia hết cho 2.
Giúp mình với.
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
A=(2016^2015-1)*(2016^2015+1)
Chứng minh A chia hết cho 4
Chứng minh A chia hết cho 12
Câu 1:
Tính : A=1.2 + 2.3 + 3.4+.......+199.200
Câu 2 : Cho A = (3n+2015)(3n+2016) với n € N . hãy chứng minh : A chia hết cho 2
Câu 3: Số học sinh khối 6 của một trường xếp hàng 10 ,hàng 12 , hàng 15 đều vừa đủ. Hỏi số học sinh của trường đó là bao nhiêu? Biết rằng số học sinh trong khoảng từ 350 đến 400 học sinh
Ai bik giải giúp e ạ...c'ơn nhiu
Gọi số học sinh khối 6 của trường đó là x (x\(\in\)N*)
Vì số học sinh khối 6 khi xếp thành 10;12;15 hàng đều vừa đủ
\(\Rightarrow\begin{cases}x⋮10\\x⋮12\\x⋮15\end{cases}\) và \(350\le x\le400\)
\(\Rightarrow x\in BC\left(10;12;15\right)\).Ta có:
\(10=2\cdot5\)
\(12=2^2\cdot3\)
\(15=3\cdot5\)
\(\Rightarrow BCNN\left(10;12;15\right)=2^2\cdot3\cdot5=60\)
\(\Rightarrow x\in BC\left(60\right)=\left\{0;60;120;180;240;300;360;420;...\right\}\)
Mà \(350\le x\le400\Rightarrow x=360\)
Vậy số học sinh khối 6 của trường đó là 360 em
Câu 1:
\(A=1\cdot2+2\cdot3+...+199\cdot200\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+199\cdot200\left(201-198\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+199\cdot200\cdot201-198\cdot199\cdot200\)
\(3A=199\cdot200\cdot201\Rightarrow A=\frac{199\cdot200\cdot201}{3}=2666600\)