Cho tam giác ABC vuông cân tại A, M là điểm tuỳ ý nằm giữa B và C. Vẽ đường cao AH của tam giác ABC.
a, Chứng minh rằng AH = \(\frac{BC}{2}\). b, Chứng minh MB2 + MC2 = 2MA2
Cho tam giác ABC vuông cân ở A;M là điểm tùy ý nằm giữa B và C.Vẽ đường cao AH của tam giác ABC.
a) chứng minh AH=BC/2
b*)chứng minh MB^2+MC^2=2MA^2
cho tam giác ABC nhọn ( AB < AC ) có đường cao AH. Trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ tam giác ABE vuông cân tại B, tam giác ACF vuông cân tại C, E và F nằm ngoài tam giác ABC. Trên tia đối của tia AH lấy I sao cho AI = BC. chứng minh rằng
a) Chứng minh tam giác ABE = tam giác BEC, từ đó suy ra BI = CE
b)BI vuông góc với CE
c) AH, CE, BF đồng quy
a) chứng minh tam giác ABI = tam giác BEC
a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)
Xét \(\Delta\)ABI và \(\Delta\)BEC có :
AI = BC(gt)
\(\widehat{IAB}=\widehat{EBC}\)(cmt)
AB = BE(tam giác ABE vuông cân tại B)
=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)
b) \(\Delta\)ABI = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)
\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)
Gọi giao điểm của CE với AB là M
Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)
Do đó \(CE\perp BI\)
Gọi giao điểm của BF và AC là N
Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)
=> BF vuông góc với CI
c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy
cho △ABC vuông tại A có AB = 3cm, BC = 5cm, vẽ đường cao AH của △ABC.
a) chứng minh tam giác ABC đồng dạng với tam giác HBA
b) chứng minh rằng AB2=BH.BC. Tính BH
c) dựng đường phân giác BD của tam giác ABC cắt AH ở E. Tính EH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=3^2/5=1,8cm
c: BE là phân giác
=>AE/AB=HE/BH
=>AE/5=HE/3=(AE+HE)/(5+3)=0,3
=>AE=1,5cm và HE=0,9cm
Bài 1 : Cho tam giác ABC cân tại A đường cao AH . Biết AB=5cm , BC=6cm
a) tính độ dài các đoạn thẳng AH , BH
b) Gọi G là trọng tâm của tam giác ABC Chứng minh rằng ba điểm A , G , H thẳng hàng
c) Chứng minh góc ABG = ACG
Bài 2 : Cho tam giác ABC cân tại A . Gọi M là trung điểm của cạnh BC
a) chứng minh tam giác ABM = ACM
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC . Chứng Minh BH = CK
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I , Chứng minh tam giác IBM cân
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC vuông tại A,vẽ đường cao AH:
a)Chứng minh tam giác ABC~tam giác HBA .Từ đó suy ra AB\(^2\)=BH.BC
b)Chứng minh rằng tam giác HBA~tam giác HCA.Từ đó suy ra AH\(^2\)=BH.CH
c)Vẽ HD vuông tại AC tại D.Đường trung tuyến CM của tam giác ABC cắt HD tại N
Chứng Minh: \(\frac{HN}{BM}=\frac{CN}{CM}\) và HN=HD
d)Qua A kẻ đường thẳng d // BC.Trên đường thẳng d lấy điểm E(E và C nằm trên cùng nửa mặt phẳng bờ AH) sao cho \(\frac{AE}{BC}=\frac{AD}{DC}\)gọi I là giao điểm của AH và CM.
Chứng minh B,E,I thẳng hàng
Cho tam giác ABC vuông tại A, vẽ đường cao AH
a) Chứng minh rằng : tam giác ABC ~ tam giác HBA. Từ đó suy ra AB2 = BH . BC
b) Chứng minh rằng ; tam giác HAB ~tam giác HCA . Từ đó suy ra AH2 = BH .CH
c) Chọn điểm E nằm trong tam giác AHC sao cho BE=BA.Vẽ BK là đường cao của tam giác BEC. Gọi S là giao điểm BK và AH. Chứng minh tam giác BKC đồng dạng với tam giácBHS và suy ra.
d) Chứng minh BE vuông góc SE
\(\text{Xét tam giác ABC và tam giác HBA,có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{B}\)\(\text{chung}\)
\(\text{Vậy tam giác ABC~tam giác HBA(g.g) }\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=HB.BC\)
B.cHỨNG MINH TƯƠNG TỰ
b) xét tam giác HAB và tam giác HCA ,có:
góc BHA = góc CHA (=90)
góc BAH = góc HCA (cùng phụ B)
nên tam giác HAB ~ tam giác HCA
=> HA/HB = HC/HA
=> HA2 = HC.HB
Cho tam giác ABC vuông tại A, đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA
b) Cho BH=4, BC=13. Tính AH, AB
c) Gọi E là 1 điểm tuỳ ý trên AB, đường thẳng qua H và vuông góc với HE cắt cạnh AC tại F. Chứng minh rằng AE.CH=AH.FC
d) Xác định vị trí của E trên AB để đoạn thẳng EF có độ dài ngắn nhất
a) Xét hai tam giác ABC và HBA có:
\(\widehat{BAC}=\widehat{BHA=1V}\)
\(\widehat{ABC}\left(\widehat{HBA}\right)\): góc chung
Vậy \(\Delta\)ABC ~ \(\Delta\)HBA.
b) Ta có:
AB2 = BH . BC (vì \(\Delta\)ABC ~ \(\Delta\)HBA.)
= 4.13
= 52
\(\Rightarrow\)AB = \(\sqrt{52}=\)\(2\sqrt{13}\)(cm)
Vì \(\Delta\)ABH vuông tại H
\(\Rightarrow\)AH2 = AB2 - BH2
= 36
\(\Rightarrow\)AH = 6(cm)
c) Xét hai tam giác AHE và CHF có:
\(\widehat{HAE}=\widehat{HCF}\)(cùng phụ với \(\widehat{HAC}\))
\(\widehat{AHE}=\widehat{CHF}\) ( cùng phụ với \(\widehat{AHF}\))
Vậy \(\Delta\)AHE ~ \(\Delta\)CHF.
\(\Rightarrow\frac{AE}{CF}=\frac{AH}{CH}\Rightarrow AE.CH=AH.CF\)(đpcm)
d)
Cho tam giác nhọn ABC , AH là đường cao . Về phía ngoài của của tam giác vẽ các tam giác vuông cân ABE và ACF , vuông ở B và C . Trên tia đối của AH lấy điểm I sao cho AI=BC. Chứng minh rằng:
a) Tam giác ABI = Tam giác BEC
b) BI=CE và BI vuông góc với CE
c) Ba đường thẳng AH,CE,BF cắt nhau tại 1 điểm.
a) Ta có \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)
Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)
Gọi giao điểm của IC và BF là T.
Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.
Vậy AH, EC, BF đồng quy tại một điểm.
Vẽ hình đi bạn
Rồi mình giúp bạn làm
Vẽ hình xong gửi tin nhắn cho mình
:) Chúc bạn học tôt
@@