Những câu hỏi liên quan
Đào Yến Nhi
Xem chi tiết
Arima Kousei
31 tháng 5 2021 lúc 22:47

\(\frac{ab}{a+b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\) 

Làm tương tự với 2 phân thức còn lại rồi cộng vào ra đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
Giao Khánh Linh
Xem chi tiết
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
9 tháng 2 2022 lúc 16:24

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)

\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)

\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng theo vế các bất đẳng thức trên ta được:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) 

hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Bất đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Lưu Nguyễn Hà An
10 tháng 2 2022 lúc 10:40

bạn giỏi quá

Nguyễn Đăng Nhân

Bình luận (0)
 Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Ngô Chi Lan
Xem chi tiết
Nguyễn Minh Đăng
21 tháng 6 2020 lúc 17:49

Bài làm:

Ta xét: \(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

Tương tự ta chứng minh được: \(\frac{ca}{b^2\left(c+a\right)}\ge\frac{1}{b}\)và \(\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{c}\)

\(\Rightarrow VT+\frac{1}{4}\left(\frac{b+c}{bc}+\frac{c+a}{ca}+\frac{a+b}{ab}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Dạ nếu em làm còn nhầm lẫn chỗ nào thì mong mn thông cảm ạ!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
21 tháng 6 2020 lúc 18:12

Ở đoạn tương tự mình viết nhầm phải là: \(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\)  và \(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)nhé!

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Anh Tuấn
Xem chi tiết
vu duc thanh
8 tháng 7 2016 lúc 22:36

bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi  hoặc bdt holder  ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\)  câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .

Bình luận (0)
Thắng Nguyễn
9 tháng 7 2016 lúc 8:37

Bài 1:Đặt VT=A

Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)

Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự với 2 cái còn lại

\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Đẳng thức xảy ra khi a=b=c 

Bài 2:

Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)

Dự đoán điểm rơi xảy ra khi a=b=c=1

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

Tương tự suy ra

\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)

Bình luận (0)
Lê Minh Triết
Xem chi tiết
Hoàng Thị Ánh Phương
6 tháng 3 2020 lúc 16:16

Bài 1 :

Với x , y > ta chứng minh :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng vào bài toán ta có :

\(\frac{1}{a+b+2c}=\frac{1}{a+c+b+c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

Tương tự ta cũng có :

\(\frac{4bc}{b+c+2a}\le\frac{bc}{a+b}+\frac{bc}{a+c};\frac{4ca}{c+a+2b}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Cộng 3 bất đẳng thức trên vế theo vế ta được :

\(4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{a+c}=c+a+b\)

\(\RightarrowĐpcm\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
6 tháng 3 2020 lúc 16:25

Bài 2 :

\(Q=\frac{1}{a^2+b^2}+\frac{2102ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\) ta có :

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab.\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)

\(\Rightarrow Q\ge4+2+1+2012=2019\)

Dấu " = " xay ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 15:57

\(\frac{ab}{a+c+b+c}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\) ; \(\frac{bc}{b+c+2a}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\); \(\frac{ca}{c+a+2b}\le\frac{1}{4}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng vế với vế:

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\right)=\frac{1}{4}\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

2.

\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

\(Q=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab+2012\)

\(Q=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}+2012\)

\(Q\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{4ab}{4ab}}+\frac{1}{4.\frac{1}{4}}+2012\)

\(Q\ge\frac{4}{1^2}+2+1+2012=2019\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
alibaba nguyễn
22 tháng 2 2019 lúc 8:38

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành

\(x+y+z=2\) chứng minh rằng

\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)

Trước hết ta chứng minh:

Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)

\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)

\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

Bình luận (0)