tìm a,b,c để P(x) = x^4 + ax^2 + bx+c chia hết cho (x-1)^3
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
Tìm a,b,c để:
1. (x4+ax3+bx+c) chia hết cho (x-3)3
2. (x5+x4-9x3+ax2+bx+c) chia hết cho (x-2)(x+2)(x+3)
3. (2x4+ax2+bx+c) chia hết cho x-2 và khi chia cho x2-1 thì dư x
Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?
1. a, tìm a để x^2 + ax^2 + 5x +3 chia hết cho x^2 + 2x + 3
b, tìm a,b để 2x^3 - x^2 + ax + b chia hết cho x^2 - 1
c, tìm a, b để 3x^3 + ax^2 + bx + 9 chia hết cho x^2 - 9
giúp mình nha, cần gấp
Tìm a,b:
a/ x4+ax+b chia hết cho x2-4
b/ x4+ax3+bx-1 chia hết cho x2-1
c/ x4+ax2+b chia hết cho x2-x+1
d/ax4+bx3+1 chia hết cho (x-1)2
TÌM A,B,C ĐỂ:
C, (x^10+ax+b) chia hết cho x^2-1 thì dư 2x+1
D, ( x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
E, (2x^4+ax^2+bx+c) chia hết cho x-2 còn khi chia cho x^2-1 thì dư x
Hộ mk nhé mn😊
C,(x^10+ax+b) chia cho x^2-1 dư 2x+1
=>x^10+ax+b=P(x)*(x^2-1)+2x+1
thay lần lượt x=1 và x=-1 vào cả 2 vế bạn sẽ tìm được a,b
Cố gắng làm nốt nhé
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
tìm a b c để (x^4+ax^3+bx+c) chia hết cho (x^3-9x^2+27x-27)
Tìm a, b, c để:
\(\left(x^4+ax^3+bx+c\right)\) chia hết cho \(\left(x-3\right)^3\)
\(\left(2x^4+ax^2+bx+c\right)chia\) hết cho x - 2 và khi chia cho \(x^2-1\) dư x
Tìm a và b để:
1)ax3+bx2+5x-50 chia hết cho x2+3x-10
2)ax4+bx3+1 chia hết cho (x-1)2
3)x4+ax3+bx-1 chia hết cho x2-1