Phân tích đa thức thành nhân tử :
a/ \(a^3-7a-6\)
b/ \(a^3+4a^2-7a-10\)
Phân tích đa thức sau thành nhân tử
a^3+4a^2-7a-10
\(a^3+4a^2-7a-10\)
\(=\left(a^3+5a^2\right)-\left(a^2+5a\right)-\left(2a+10\right)\)
\(=a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)
\(=\left(a^2-a-2\right)\left(a+5\right)\)
\(=\left(a^2-2a+a-2\right)\left(a+5\right)\)
\(=\left[a\left(a-2\right)+\left(a-2\right)\right]\left(a+5\right)\)
\(=\left(a+1\right)\left(a-2\right)\left(a+5\right)\)
Phân tích đa thức thành nhân tử :
\(a^3+4a^2-7a-10\)
\(a^3+4a^2-7a-10\)
\(=a^3+3a^2+a^2-10a+3a-10\)
\(=\left(a^3+a^2\right)+\left(3a^2+3a\right)-\left(10a+10\right)\)
\(=a^2\left(a+1\right)+3a\left(a+1\right)-10\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+3a-10\right)\)
\(=\left(a+1\right)\left[\left(a^2+5a-2a-10\right)\right]\)
\(=\left(a+1\right)\left[a\left(a+5\right)-2\left(a+5\right)\right]\)
\(=\left(a+1\right)\left(a+5\right)\left(a-2\right)\)
1/Cho a+4b=5. Tìm GTNN của biểu thức: M= 4a^2+4b^2
2/Phân tích đa thức thành nhân tử
a^2-7a+18
1+a^3+a^10
Phân tích các đa thức sau đây thành nhân tử :
a) a3 -7a -6
b) a3 +4a2 -7a -10
c) a(b+c)2 +b(c+a)2 +c(a+b)2 -4abc
d) (a2 +a)2 +4(a2+a) -12
bn nào giúp mik vs!!!
\(a,a^3-7a-6\)
\(\Leftrightarrow a^3+a^2-a^2-a-6a-6\)
\(\Leftrightarrow a^2\left(a+1\right)-a\left(a+1\right)-6\left(a+1\right)\)
\(\Leftrightarrow\left(a+1\right)\left(a^2-a-6\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(b,a^3+4a^2-7a-10\)
\(\Leftrightarrow a^3+5a^2-a^2-5a-2a-10\)
\(\Leftrightarrow a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)
\(\Leftrightarrow\left(a+5\right)\left(a+1\right)\left(a-2\right)\)
\(d,\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
Đặt a^2+a=y ta có
y^2+4y-12=(y+6)(y-2)
<=> (a^2+a+6)(a^2+a-2)
<=> (a^2+a+6)(x-1)(x+2)
Phân tích đa thức thành nhân tử:
7a - 7b + a^2 - b^2
\(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)=\left(a-b\right)\left(7+a+b\right)\)
\(7a-7b+a^2-b^2\)
\(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a+b+7\right)\)
Phân tích đa thức thành nhân tử :
a. \(a^3+4a^2-7a-10\)
b. \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
c. \(x^3-x^2-4x^2+8x-4\)
b. \(\left(a^2+a\right)+a\left(a^2+a\right)-12\)
<=>\(\left(x^3+3x^2-4\right)+\left(3x^2+9x-12\right)\)
<=>\(x\left(x^2+3x-4\right)+3\left(x^2+3x-4\right)\)
<=>\(\left(x^2+3x-4\right)\left(x+3\right)\)
<=>\(\left(x+3\right)\left(x^2+4x\right)-\left(x-4\right)\)
đóngmở ngoặc nhé mk ngại ghi lại
<=>(x+3)(x(x+4)-(x+4))
<=>(x+3)(x-1)(x+4)
kết pn fb mk nhé longtrangv@gmail.com
c) \(x^3-x^2-4x^2+8x-4\)
= \(x^3-x^2-4x^2+4x+4x-4\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)
Phân tích các đa thức sau đây thành nhân tử
1. a3 - 7a - 6
2. a3 + 4a2 - 7a - 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc
4. (a2 + a)2 + 4(a2 + a) - 12
5. (x2 + x + 1) (x2 + x + 2) - 12
6. x8 + x + 1
7. x10 + x5 + 1
. Phân tích các đa thức sau đây thành nhân tử
1. a3 - 7a - 6
2. a3 + 4a2 - 7a - 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc
4. (a2 + a)2 + 4(a2 + a) - 12
5. (x2 + x + 1) (x2 + x + 2) - 12
6. x8 + x + 1
7. x10 + x5 + 1
4. Đặt t= a^2 +a
Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)
5. Đặt t = x^2 +x+1
Ta có: t(t+1) -12
= t^2 +t-12
= (t-3)(t+4)
= ( x^2 +x -2 ) (x^2+x+5)
= (x-1) ( x+2) (x^2+x+5)
6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1
= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)
7. x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1
= (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)
a3 - 7a - 6
= a3 - a - 6a - 6
= a ( a2 - 1 ) - 6 ( a + 1 )
= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )
= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]
= ( a + 1 ) ( a2 - a - 6 )
= ( a + 1 ) ( a2 + 2a - 3a - 6 )
= ( a + 1 ) ( a + 2 ) ( a - 3 )
1. a3 - 7a - 6
= a^3 - a - 6a - 6
= a(a^2 - 1) - 6(a + 1)
= a(a - 1)(a + 1) - 6(a + 1)
= (a+1)(a^2 - a - 6)
= (a+1)(a^2 -3a + 2a - 6)
= (a+1)[a(a-3) + 2(a-3)]
= (a+1)(a+2)(a-3)
2. a3 + 4a2 - 7a - 10
= a^3 + 5a^2 - a^2 - 5a - 2a - 10
= a^2(a+5) - a(a+5) - 2(a + 5)
= (a^2 - a - 2)(a+5)
= (a^2 + a - 2a - 2)(a+5)
= [a(a+1) - 2(a+1)](a+5)
= (a+1)(a-2)(a+5)
Phân tích các đa thức sau thành nhân tử ;
1) a3 - 7a - 6
2) a (b + c)2 + b (c + a)2 + c (a + b) 2 - 4abc
....#$ !!!
1.a^3-7a-6
<=>x^3+2x^2-2x^2-4x-3x-6
<=>x^2-2x-3(x+2)=(x^2+x-3x-3)(x+2)
<=>[(x-3)(x+1)](x+2)
<=>(x-3)(x+1)(x+2)=0
<=>x-3=0 <=>x=3 hoặc x+1=0<=>x=-1 hoặc x+2=0<=>x=-2
2. a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
=a(b^2+2bc+c^2)+b(c^2+2ca+a^2)+c(a^2+2ab+b^2)-4abc
=ab^2+2abc+ac^2+bc^2+2abc+ba^2+ca^2+2abc+b^2-4abc
=ab^2+bc^2+ca^2+cb^2+6abc-4abc
=ab^2+bc^2+ca^2+cb^2+2abc
=a^3+b^3+c^3+2abc