Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:11

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Diệu Ngọc
Xem chi tiết
Hồng Phúc
14 tháng 3 2021 lúc 21:57

\(y=f\left(x\right)=\left(x+1\right)\left(2-x\right)=-x^2+x+2\)

\(\Rightarrow maxf\left(x\right)=max\left\{f\left(-1\right);f\left(2\right);f\left(\dfrac{1}{2}\right)\right\}=f\left(\dfrac{1}{2}\right)=\dfrac{9}{4}\)

Dương Thị Xuân Tình
Xem chi tiết
Akai Haruma
13 tháng 9 2021 lúc 9:33

Lời giải:
TXĐ: $[-1;1]$

$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$

$y'=0\Leftrightarrow x=0$

$f(0)=2$;

$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$

minh hoang cong
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:21

Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)

\(y_{min}=0\) khi \(x=-1\)

Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)

\(\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\) khi \(x=1\)

♥ Aoko ♥
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 15:08

a.

\(-1\le sin\left(1-x^2\right)\le1\)

\(\Rightarrow y_{min}=-1\) khi \(1-x^2=-\dfrac{\pi}{2}+k2\pi\) \(\Rightarrow x^2=\dfrac{\pi}{2}+1+k2\pi\) (\(k\ge0\))

\(y_{max}=1\) khi \(1-x^2=\dfrac{\pi}{2}+k2\pi\Rightarrow x^2=1-\dfrac{\pi}{2}+k2\pi\) (\(k\ge1\))

b.

Đặt \(\sqrt{2-x^2}=t\Rightarrow t\in\left[0;\sqrt{2}\right]\subset\left[0;\pi\right]\)

\(y=cost\) nghịch biến trên \(\left[0;\pi\right]\Rightarrow\) nghịch biến trên \(\left[0;\sqrt{2}\right]\)

\(\Rightarrow y_{max}=y\left(0\right)=cos0=1\) khi \(x^2=2\Rightarrow x=\pm\sqrt{2}\)

\(y_{min}=y\left(\sqrt{2}\right)=cos\sqrt{2}\) khi  \(x=0\)

Lê Bảo Ngọc
Xem chi tiết
Không Tên
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
khoimzx
13 tháng 12 2020 lúc 18:54

\(x\sqrt{4-x^2}\le\dfrac{x^2+4-x^2}{2}=2\)