cho các số a,b,c khác 0 thỏa mãn a+b+c=\(a^2+b^2+c^2=1\)và x:y:z=a:b:c
CMR:(\(x+y+z\))\(^2\)=\(x^2+y^2+z^2\)
cho các số a,b,c khác 0 thỏa mãn:a+b+c=a^2+b^2+c^2 =1 và x:y:z=a:b:c. Chứng minh rằng (x+y+z)^2=x^2+y^2+z^2
bạn nào lm đúng mk tick cho
cho a+b+c = a^2 +b^2+c^2 =1 và x:y:z =a:b:c
CMR : (x+y+z) ^2=x^2 +y^2+z^2
Kb: Có lẽ tôi viết đến đây cũng đã nói hết cảm xúc trong lòng mình. Mọi chuyện rồi cũng sẽ ổn thôi. Đối với đây là 1 cuộc chia tay vô cùng ý nghĩa-Cuộc chia tay của những con búp bê
Ta có BĐT Bu-nhi-a-cốp-xki sau đây :
(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) >= (ax + by + cz)^2
(Bạn tự cm BĐT này)
Từ đó suy ra : (a + b + c)^2 = (a.căn x / căn x + b.căn y/ căn y + c.căn z/căn z)^2
<= [(a/căn x)^2 + (b/căn y)^2 + (c/căn z)^2][(căn x)^2 + (căn y)^2 + (căn z)^2] = (a^2/x + b^2/y + c^2/z)(x+y+z)
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/(x+y+z)
Cho a+b+c = a^2 + b^2 + c^2 =1 và x:y:z = a:b:c
CMR: (x+y+z)^2 = x^2 + y^2 + z^2
Cho các số a,b,c khác 0 thỏa mãn a+b+c = a2 + b2 + c2 = 1 và x : y : z = a:b:c chứng minh ( x+ y+ z)2 = x2 + y2 + z2
x:y:z=a:b:c => x=ak ; y=bk ; z=ck (k thuộc R)
Vì a+b+c=a^2+b^2+c^2=1 => (a+b+c)^2=a^2+b^2+c^2=1
=> k^2 . (a+b+c)^2= k ^2 . (a^2+b^2+c^2)
=> (ak+bk+ck)^2 =(ak)^2+(bk)^2+(ck)^2
=> (x+y+z)^2=x^2+y^2+z^2
Dùng tính chất dãy tỉ số bằng nhau
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)\(\Rightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\Rightarrow DPCM\)
Theo đề ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)
\(=x+y+z\)
\(=>\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho x:y:z=a:b:c va a+b+c=a^2+b^2+c^2
CMR (x+y+z) ^2=x^2+y^2+z^2
a,Cho cac s số a,b,c,x,y,z thoả mãn đk:x/a=y/b=z/c
CMR bz-cy/a=cx-az/b=ay-bx/c.
b, cho a+b+c =a^2 +b^2+c^2 =1 và x:y:z=a:b:c
CMR (x+y+z)^2=x^2+y^2+z^2
Cho a+b+c = a2+b2+c2=1 và x:y:z=a:b:c. CMR : (x+y+z)2=x2+y2+z2
Do x:y:z=a:b:c Nên nếu x=ka thì y=kb; z=kc
Khi đó: (x+y+z)2=[k(a+b+c)]2=k2 (x2+y2+z2)=k2(a2+b2+c2)=k2 ⇒(x+y+z)2=x2+y2+z2 ( đpcm)
giúp với gấp lắm!!!! mai phải nộp ùi!!!
Cho a+b+c=a^2+b^2+c^2=1 và x:y:z=a:b:c
CMR (x+y+z)^2=x^2+y^2+z^2
Cho a+b+c = a2+b2+c2 = 1 và x:y:z=a:b:c
CMR: (x+y+z)2=x2+y2+z2
Từ x:y:z=a:b:c => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (Vì a+b+c=1)
Do đó: (x+y+z)2 = \(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
=> (x+y+z)2 = x2+y2+z2