a) \(P=\frac{3}{7.5}+\frac{3}{7.5^2}+....+\frac{3}{7.5^{2006}}\)
b) rút gọn biểu thức \(B=\left(xy^2\right)^2.2xyz.\left(-\frac{1}{2}xyz\right)^3\)
c) xác định hàm số y=IaI.x bt đồ thị hàm số đi qua điểm A(3;-2)
đặc biệt là c nha các bn
Rút gọn
C = \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
\(C=\frac{\left(\frac{2}{5}\right)^7\times5^7+\left(\frac{9}{4}\right)^3\div\left(\frac{3}{16}\right)^3}{2^7\times5^2+512}\)
\(=\frac{\left(\frac{2}{5}\times5\right)^7+\left(\frac{9}{4}\div\frac{3}{16}\right)^3}{2^7\times5^2+2^9}\)
\(=\frac{2^7+12^3}{2^7\times\left(25+2^2\right)}\)
\(=\frac{2^7+\left(2^2\times3\right)^3}{2^7\times\left(25+4\right)}\)
\(=\frac{2^7+2^6\times3^3}{2^7\times29}\)
\(=\frac{2^6\times\left(2+27\right)}{2^7\times29}\)
\(=\frac{29}{2\times29}\)
\(=\frac{1}{2}\)
1 Rút gọn
F=\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^7+512}\)
\(F=\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^9\div\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
\(F=\frac{\left(\frac{2.5}{5}\right)^7+\left(\frac{9.16}{4.3}\right)^3}{2^7.5^2+2^9}=\frac{2^7+12^3}{2^7.5^2+2^9}=\frac{2^7+2^6.3^3}{2^7.5^2+2^9}=\frac{2^6.\left(2+3^3\right)}{2^7.\left(5^2+2^2\right)}=\frac{2^6.29}{2^7.29}\)
\(F=\frac{1}{2}\)
Bài 1: Tìm x biết: a, |2x+5|-|x+3|=0
Bài 2: Rút gọn:
a,\(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)
b,\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)
2a) \(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)
= \(\frac{3^6+\left(3^2.5\right)^4-\left(3.5\right)^3.\left(2^2\right)^5}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}\)
= \(\frac{3^6+3^8.5^4-3^3.5^3.4^{10}}{3^{12}.5^6-3^{12}.5^6}=\frac{3^3.\left(3^3+3^5.5^4-5^3.4^{10}\right)}{0}\)(xem lại đề)
b) \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)
= \(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{16}{3}:\frac{4}{9}\right)^3}{2^7.5^2+2^9}\)
= \(\frac{2^7+12^3}{2^7\left(5^2+2^2\right)}\)
= \(\frac{2^7+\left(2^2.3\right)^3}{2^7.29}\)
= \(\frac{2^7+2^6.3^3}{2^7.29}\)
= \(\frac{2^6\left(1+27\right)}{2^7.29}=\frac{28}{2.29}=\frac{14}{29}\)
mk xin lỗi bn nhé...mk vt nhầm đề...mk vt lại nha:
2a,\(\frac{3^6+45^4-15^3.9^5}{27^4.25^3+45^6}\)
Rút gọn
C = \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
D = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)
E = \(\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
c: \(C=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\dfrac{9^3}{4^3}:\dfrac{3^3}{16^3}}{2^7\cdot5^2+2^9}=\dfrac{1+1728}{3712}=\dfrac{1729}{3712}\)
\(D=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\dfrac{3^5-3^4}{3^6+3^5}=\dfrac{3^4\left(3-1\right)}{3^5\left(3+1\right)}=\dfrac{2}{3\cdot4}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(E=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}=\dfrac{5^{10}\cdot7^3\cdot\left(-6\right)}{5^9\cdot7^3\cdot9}=5\cdot\dfrac{-2}{3}=\dfrac{-10}{3}\)
Cho hàm số \(y = f\left( x \right) = \frac{1}{2}{x^2}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {1;\frac{1}{2}} \right)\) thuộc \(\left( C \right)\).
a) Vẽ \(\left( C \right)\) và tính \(f'\left( 1 \right)\).
b) Vẽ đường thẳng \(d\) đi qua điểm \(M\) và có hệ số góc bằng \(f'\left( 1 \right)\). Nêu nhận xét về vị trí tương đối giữa \(d\) và \(\left( C \right)\).
a)
\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {{x^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{1}{2}\left( {x + 1} \right) = \frac{1}{2}\left( {1 + 1} \right) = 1\end{array}\)
b) Phương trình đường thẳng \(d\) đi qua điểm \(M\left( {1;\frac{1}{2}} \right)\) và có hệ số góc bằng \(k = f'\left( 1 \right) = 1\) là: \(y - \frac{1}{2} = 1\left( {x - 1} \right) \Leftrightarrow y = x - 1 + \frac{1}{2} \Leftrightarrow y = x - \frac{1}{2}\).
Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại duy nhất điểm \(M\left( {1;\frac{1}{2}} \right)\).
\(\frac{\left(\frac{1}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+129.2}\)
1,Tính : ( Hãy tính nhanh nếu có thể )
a,\(\frac{3^6.45^4-15^{13}.\left(\frac{1}{5}\right)^9}{27^4.25^3+45^6}\)
b,\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
Tính
\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{14}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}=?\)
Bạn đổi \(\left(\frac{2}{5}\right)^7.5^7=\frac{2^7}{5^7}.5^7=2^7=128\)
\(\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3=\frac{9^3}{4^3}.\frac{16^3}{3^3}=\frac{3^3.3^3}{4^3}.\frac{4^3.4^3}{3^3}=3^3.4^3=17.64=1088\)
CỘNG 2 CÁI ĐÓ LẠI RỒI LÀM Ở TỬ SỐ LÀ RA.
BẤM ĐÚNG NẾU THẤY ĐÚNG
\(=\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{9}{4}:\frac{3}{16}\right)^3}{2^7.5^2+512}=\frac{2^7+12^3}{2^7.5^2+512}=\frac{128+1728}{3200+512}=\frac{1856}{3712}=\frac{1}{2}\)