Tìm GTNN của \(C=\frac{2019}{3\left|x-3y\right|+\left|2x-2\right|+2020}\)
Tìm GTNN của P = \(\left|x-2020\right|+\left(x-2019\right)^2+\left|4038-2x\right|\)
Tìm GTNN của các biểu thức sau:
F=\(\left|2X-2\right|+\left|2X-2003\right|\)
G=\(\left|2X-3\right|+\frac{1}{2}\left|4X-1\right|\)
H=\(\left|X-2018\right|+\left|X-2019\right|+\left|X-2020\right|\)
CÁC BẠN GIÚP MÌNH VỚI !!!!!!!!!!!!!!!!!
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
Tìm GTNN của các biểu thức sau:
F=\(\left|2x-2\right|+\left|2x-2003\right|\)
G=\(\left|2x-3\right|+\frac{1}{2}\left|4x-1\right|\)
H=\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
CÁC BẠN GIÚP MÌNH VỚI !!!!!!!!!!!!!!!!!
Lời giải:
Bạn áp dụng BĐT sau:
$|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Ta có:
\(F=|2x-2|+|2x-2003|=|2x-2|+|2003-2x|\geq |2x-2+2003-2x|=2001\)
Vậy $F_{\min}=2001$. Dấu "=" xảy ra khi $(2x-2)(2003-2x)\geq 0$
$\Leftrightarrow 1\leq x\leq \frac{2003}{2}$
---------------
\(G=|2x-3|+\frac{1}{2}|4x-1|=|2x-3|+|2x-\frac{1}{2}|=|3-2x|+|2x-\frac{1}{2}|\geq |3-2x+2x-\frac{1}{2}|\)
\(=\frac{5}{2}\)
Vậy $G_{\min}=\frac{5}{2}$. Dấu "=" xảy ra khi $(3-2x)(2x-\frac{1}{2})\geq 0$
$\Leftrightarrow \frac{1}{4}\leq x\leq \frac{3}{2}$
$H=|x-2018|+|x-2019|+|x-2020|$
$=|x-2018|+|x-2020|+|x-2019|=|x-2018|+|2020-x|+|x-2019|$
Ta có:
$|x-2018|+|2020-x|\geq |x-2018+2020-x|=2$
$|x-2019|\geq 0$ với mọi $x$
$\Rightarrow H\geq 2$
Vậy $H_{\min}=2$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-2018)(2020-x)\geq 0\\ x-2019=0\end{matrix}\right.\Leftrightarrow x=2019\)
Tìm x biết \(\frac{\left(2019-x\right)^2+\left(2019-x\right)\left(x-2020\right)}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)}\)\(\frac{+\left(x-2020\right)^2}{+\left(x-2020\right)^2}\)\(=\frac{19}{49}\)
tìm x biết
\(\frac{\left(2019-x^2\right)+\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)+\left(x-2020^2\right)}\) = \(\frac{19}{49}\)
Tìm GTNN của A:
A=\(\left|x-2019\right|+\left|x-2020\right|\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2019|+|x-2020|=|x-2019|+|2020-x|\geq |x-2019+2020-x|=1$
Vậy $A_{\min}=1$. Giá trị này đạt tại $(x-2019)(2020-x)\geq 0$
$\Leftrightarrow 2019\leq x\leq 2020$
Tìm x, biết:
\(\frac{\left(2019-x\right)^2+\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}=\frac{19}{49}\)
Các bạn mong giúp mình sớm nhé
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
Tham khảo tại: Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến
tìm gtnn
C=2020-|x+1|-|y-2| biết x+y=5
D=\(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)
E=\(^{\frac{27-2x}{12-x}}\)x\(\varepsilon\)Z
tìm gtnn
C=2020-|x+1|-|y-2| biết x+y=5
D=\(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)
E=\(^{\frac{27-2x}{12-x}}\)x\(\varepsilon\)Z