Cho hệ phương trình
x+my=m+1
mx+y=3m-1
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y<0
Cho hệ phương trình x+my=m+1 mx+y=3m-1 Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y
Cho hệ phương trình mx+y= m +2 và 4x+ m=3m +2
a. Tìm m để hệ phương trình có nghiệm?
b. Tìm m để hệ phương trình có nghiệm duy nhất sao cho P=2x2+y nhỏ nhất?
1) Gọi nghiệm của hệ phương trình 2x+y=5 và 2y-x=10K + 5 là (x;y)
Tìm K để B = (2x+1)(y+1) đạt giá trị lớn nhất
2) Cho hệ phương trình x-2y=3-m và 2x+y=3(m+2). Gọi nghiệm của hệ phương trình là (x;y). Tìm m để x^2 + y^2 đạt giá trị nhỏ nhất
Cho hệ phương trình:
\(\hept{\begin{cases}\left(m+1\right)\cdot x+m\cdot y=2\cdot m-1\\m\cdot x-y=m^2-2\end{cases}}\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn x*y lớn nhất.
Cho hệ phương trình \(\hept{\begin{cases}mx\:+\:y\:=\:n\\x\:+\:y\:=\:1\end{cases}}\)
Tìm n để hệ có nghiệm với mọi giá trị của m
cho hệ phương trình \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a, với giá trị nào của n thì hệ phương trình có duy nhất một nghiệm
b, với giá trị nào của n thì hệ phương trình vô nghiệm
Tập tất cả các giá trị của tham số m để hệ bất phương trình 2 x - 1 ≥ 3 x - m ≤ 0 có nghiệm duy nhất là
A. ∅
B. 2
C. [ 2 ; + ∞ )
D. ( - ∞ ; 2 ]
Ta có 2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!