Cho hệ phương trình:
\(\hept{\begin{cases}\left(m+1\right)\cdot x+m\cdot y=2\cdot m-1\\m\cdot x-y=m^2-2\end{cases}}\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn x*y lớn nhất.
Cho hệ phương trình mx+y= m +2 và 4x+ m=3m +2
a. Tìm m để hệ phương trình có nghiệm?
b. Tìm m để hệ phương trình có nghiệm duy nhất sao cho P=2x2+y nhỏ nhất?
1) Gọi nghiệm của hệ phương trình 2x+y=5 và 2y-x=10K + 5 là (x;y)
Tìm K để B = (2x+1)(y+1) đạt giá trị lớn nhất
2) Cho hệ phương trình x-2y=3-m và 2x+y=3(m+2). Gọi nghiệm của hệ phương trình là (x;y). Tìm m để x^2 + y^2 đạt giá trị nhỏ nhất
Cho hệ phương trình \(\hept{\begin{cases}mx\:+\:y\:=\:n\\x\:+\:y\:=\:1\end{cases}}\)
Tìm n để hệ có nghiệm với mọi giá trị của m
cho hệ phương trình \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a, với giá trị nào của n thì hệ phương trình có duy nhất một nghiệm
b, với giá trị nào của n thì hệ phương trình vô nghiệm
Cho HPT: x-y =1 và 3x+2y=m (vs m là tham số)
a) Giai hệ phg trình khi m=4
b) tìm m để HPT có nghiệm duy nhất thỏa mãn x/y =3/4
Tìm m để phương trình \(x^2-x+m^2-6=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(2018x_1+2019x_2=2020\) Tích các giá trị của m tìm được là
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12
Cho phương trình bậc 2 : x²+(m+1)x+m=0
a) Tìm m để pt có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1+3x2=1
b) Khi pt có 2 nghiệm phân biệt x1,x2 lập hệ thức liên hệ giữa nghiệm độc lập với m