1, cho hpt (m+1)x + y=4 và mx+y=2m
m là tham số .tìm m để hpt có nghiệm (x;y) thỏa mãn x+y =2
2, cho hpt 3x + (m-1)y=12 và (m-1)x +12y=24
a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y = -1
b, tìm m nguyên để hpt có nghiệm duy nhất là nghiệm nguyên
1. Cho hpt:
x-2y=-m-2
x+y=2m+1
Tìm m để hpt có ngiệm(x;y) thoả x2 +y2 nhỏ nhất, tìm giá trị đó.
2.Cho hpt:
x+my=3
mx+2my=m+4
a. Giải và biện luận hpt theo tham số m.
b. Tìm các giá trị nguyên của m để hpt đã cho có nghiệm x,y đều là các số nguyên.
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
cho hpt x+y =3 và -mx -y =2m. Xác định m để hpt có 1 nghiệm ?Vô nghiệm ? vô số nghiệm
cho hpt với m là tham số mx+y=4 và x-my=1. Với giá trị nào của m để hpt có nghiệm duy nhất thỏa mãn x+y=8/m2+1. Khi đó hãy tìm giá trị của x;y
\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)
\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)
<=> 5+3m=8 <=> m=1
\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
Cho hệ phương trình mx+2y=1
x-2my=m-2(m là tham số)
a.giải hpt khi m=-3
b.tìm m để hpt có nghiệm duy nhất(x;y)thỏa mãn x-2y=-1
a: Khi m=-3 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}-3x+2y=1\\x-2\cdot\left(-3\right)\cdot y=-3-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3x+2y=1\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=1\\3x+18y=-15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}20y=-14\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{10}\\x=-5-6y=-5-6\cdot\dfrac{-7}{10}=\dfrac{42}{10}-5=-\dfrac{8}{10}=-\dfrac{4}{5}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}mx+2y=1\\x-2my=m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\m\left(2my+m-2\right)+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\2m^2\cdot y+m^2-2m+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\y\left(2m^2+2\right)=-m^2+2m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=2m\cdot\dfrac{-m^2+2m+1}{2m^2+2}+m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{m\left(-m^2+2m+1\right)}{m^2+1}+m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{-m^3+2m^2+m+\left(m-2\right)\left(m^2+1\right)}{m^2+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-m^3+2m^2+m+m^3+m-2m^2-2}{m^2+1}=\dfrac{2m-2}{m^2+1}\\y=\dfrac{-m^2+2m+1}{2m^2+2}\end{matrix}\right.\)
x-2y=-1
=>\(\dfrac{2m-2}{m^2+1}-\dfrac{2\cdot\left(-m^2+2m+1\right)}{2m^2+2}=1\)
=>\(\dfrac{2m-2}{m^2+1}-\dfrac{-m^2+2m+1}{m^2+1}=1\)
=>\(\dfrac{2m-2+m^2-2m-1}{m^2+1}=1\)
=>\(m^2-3=m^2+1\)
=>-3=1(vô lý)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
1. tìm m để hpt có nghiệm duy nhất mà x và y trái dấu
2. tìm m để hpt có nghiệm duy nhất mà x và y là số nguyên
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)
cho hpt \(\hept{\begin{cases}\left(m+1\right)x+y=4\\mx+y=2m\end{cases}}\)
tìm m để hpt có nghiệm (x,y) thỏa mãn điều kiện x+y=2
Cho hpt:(m+1)x -y=3/mx-y=m với m là tham số .Tìm m để hpt đã cho có hệ duy nhất thoả mãn x+y>0