Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Sử Nam Phương
Xem chi tiết
missing you =
26 tháng 11 2021 lúc 19:06

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

Nguyễn tùng Sơn
Xem chi tiết
ngonhuminh
19 tháng 1 2017 lúc 16:18

Với x khác 1 nhân cả hai vế với (x-1) khác 0

\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)

\(x^7=1\)

với x>1 hiển nhiên VT>1 => vô nghiệm

với 0<=x<1 hiển nhiên VT<1

Với x<0  do số mũ =7 lẻ => VT<0<1 

Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x

hotboy2002
Xem chi tiết
nguyen manh thang
29 tháng 1 2016 lúc 19:25

toi moi hoc lop 6

HOANGTRUNGKIEN
29 tháng 1 2016 lúc 19:27

minh hc lop 6 nen khong biet lam toan lop 8

Khuất Ngọc Hải
29 tháng 1 2016 lúc 19:31

ptr <=> x^6 - x^5 + (1/4)x^4 + (3/4)x^4 - x³ + (1/3)x² + (2/3)x² - x + 3/8 + 3/8 = 0 

<=> x^4.(x² - x + 1/4) + (3x²/4).(x² - 4x/3 + 4/9) + (2/3)(x² - 3x/2 + 9/16) + 3/8 = 0 

<=> x^4.(x - 1/2)² + (3x²/4).(x - 2/3)² + (2/3)(x - 3/4)² + 3/8 = 0 

ptrình vô nghiệm vì VT > 0 với mọi x (thậm chí VT > 3/8 với mọi x) 

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 0:26

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2

#Biinz_Tổng
Xem chi tiết
Nguyễn Tấn Phát
22 tháng 1 2020 lúc 12:45

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

Khách vãng lai đã xóa
Lê Vũ Anh Thư
Xem chi tiết
shitbo
27 tháng 12 2018 lúc 12:05

Chieu nay nhe

Tran Diem My
27 tháng 12 2018 lúc 12:17

troi oi anh oi kho nhu vay lam sao ma lam duoc vay de hay la em len hoi thay giao em nhe thay em chinh la bo cua em day va bo em chinh la hieu pho cua truong thcs doan ket

shitbo
27 tháng 12 2018 lúc 14:41

\(x^6+x^5+x^4+x^3+x^2+x+1=x^4\left(x^2+x\right)+x^2\left(x^2+x\right)+x^2+x+1\)

\(=\left(x^2+x\right)\left(x^4+x^2+1\right)+1\)

\(Taco:\left(x^2+x\right)\left(x^4+x^2+1\right)\ge0\forall x\Rightarrow\left(x^2+x\right)\left(x^4+x^2+1\right)+1\ge1\)

\(Ma:\left(x^2+x\right)\left(x^4+x^2+1\right)+1=0\left(loai\right)\)

Vay pt vo nghiem

Lưu Ngọc Thái Sơn
Xem chi tiết
Nguyễn Linh Chi
24 tháng 4 2020 lúc 16:53

+) Ta có: P(x) = 0 có 3 nghiệm phân biệt 

=> Gọi 3 nghiệm đó là m; n ; p. 

=> P(x) = ( x - m ) ( x - p ) (x - n) 

=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )

Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm 

=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)

=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)

=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)

Khách vãng lai đã xóa
Nguyễn Văn Tiến
Xem chi tiết
Trần Hữu Ngọc Minh
23 tháng 1 2018 lúc 16:50

bạn đánh lên google đi có đó

Nguyễn Việt Anh
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 1 2022 lúc 9:53

\(x^2-3x+12=0\)

\(\Rightarrow\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{39}{4}=0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{39}{4}=0\left(VLý\right)\)

Vậy PT vô nghiệm với mọi x∈R