Giải phương trình:
x2 + \(\frac{1}{x^2}\) - \(\frac{9}{2}\left(x+\frac{1}{x}\right)\)+ 7 = 0
Giải phương trình: \(x^2+\frac{1}{x^2}+\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)\(0\)
ĐẶt x+1/x = m
suy ra x2+1/x2=m2-2
Vậy m2-2+9/2m+7=0
2m2+9m+10=0
(2m2+4m) +(5m+10)=0
2m(m+2)+5(m+2)=0
\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)
Với m=-2
x+1/x=-2 hay x2+2x+1=0
x=-1
Với m=-5/2 làm tương tự
giải phương trình
\(x^2+\frac{1}{x^2}-\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)
giải phương trình sau:
\(\left(\frac{1}{3}x-2\right)^3+\left(\frac{2}{3}-7\right)^3+\left(9-x\right)^3=0.\)
Giải phương trình: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2-\frac{7\left(x^2-9\right)}{x^2-4}=0\)
ĐK: \(x\ne\pm2\)
Phương trình đã cho tương đương với: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2-7\left(\frac{x+3}{x-2}.\frac{x-3}{x+2}\right)=0\)(1)
Đặt \(\frac{x+3}{x-2}=t,\frac{x-3}{x+2}=k\)
Khi đó (1) trở thành: \(t^2+6k^2-7tk=0\)
\(\Leftrightarrow t\left(t-6k\right)-k\left(t-6k\right)=0\Leftrightarrow\left(t-k\right)\left(t-6k\right)=0\Leftrightarrow\orbr{\begin{cases}t=k\\t=6k\end{cases}}\)
- Nếu t = k thì \(\frac{x+3}{x-2}=\frac{x-3}{x+2}\Rightarrow\left(x+3\right)\left(x+2\right)=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow x^2+5x+6=x^2-5x+6\Rightarrow5x=-5x\Rightarrow x=0\)(thỏa mãn điều kiện)
- Nếu t = 6k thì \(\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+5x+6=6x^2-30x+36\)
\(\Leftrightarrow6x^2-30x+36-x^2-5x-6=0\)
\(\Leftrightarrow5x^2-35x+30=0\Leftrightarrow5\left(x^2-7x+6\right)=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\) (thỏa mãn điều kiện)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1;6\right\}\)
giải bất phương trình
a.\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
b.\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
2.Giải phương trình
b.\(\frac{\left|2x-1\right|}{x-1}+1=\frac{1}{x-1}\)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
Giải các phương trình:
1.\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
\(2.\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
\(3.\left(x^2+\frac{1}{x^2}\right)+5\left(x^2+\frac{1}{2}\right)-12=0\)
a)Giải phương trình:\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)0
b)Tìm nghiệm nguyên của phương trình: \(2x^2+3xy-2y^2=7.\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
giải phương trình
\(x^2+\frac{1}{x^2}-\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)
cần gấp tối nay mình đi học rồi
\(ĐKXĐ:\) \(x\ne0\)
Đặt \(x+\frac{1}{x}=y\) \(\left(\text{*}\right)\), thì khi đó \(x^2+\frac{1}{x^2}=y^2-2\)
Do đó, \(y^2-2-\frac{9}{2}y+7=0\)
\(\Leftrightarrow\) \(y^2-\frac{9}{2}y+5=0\)
\(\Leftrightarrow\) \(2y^2-9y+10=0\)
\(\Leftrightarrow\) \(2y^2-4y-5y+10=0\)
\(\Leftrightarrow\) \(2y\left(y-2\right)-5\left(y-2\right)=0\)
\(\Leftrightarrow\) \(\left(y-2\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\) \(^{y-2=0}_{2y-5=0}\) \(\Leftrightarrow\) \(^{y=2}_{y=\frac{5}{2}}\)
\(\text{*)}\) Với trường hợp \(y=2\) thì khi đó, \(\left(\text{*}\right)\) \(\Rightarrow\) \(x+\frac{1}{x}=2\) \(\left(1\right)\)
Vì \(x\ne0\) nên từ \(\left(1\right)\) suy ra \(x^2+1=2x\) \(\Leftrightarrow\) \(x^2-2x+1=0\) \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\) ( thỏa mãn điều kiện xác định)
\(\text{*)}\) Với \(y=\frac{5}{2}\) thì \(\left(\text{*}\right)\) \(\Rightarrow\) \(x+\frac{1}{x}=\frac{5}{2}\) \(\left(2\right)\)
Từ \(\left(2\right)\) \(\Rightarrow\) \(2x^2+2=5x\) (do \(x\ne0\) )
\(\Leftrightarrow\) \(2x^2-5x+2=0\)
\(\Leftrightarrow\) \(2x^2-4x-x+2=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\) \(^{x-2=0}_{2x-1=0}\) \(\Leftrightarrow\) \(^{x=2}_{x=\frac{1}{2}}\) (t/mãn điều kiện xác định)
Vậy, \(S=\left\{1;2;\frac{1}{2}\right\}\)
Giải phương trình
\(\frac{13}{\left(2x+7\right)\left(x-3\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
\(\left(1-\frac{2x-1}{x+1}\right)+6\left(1-\frac{2x-1}{x+1}\right)^2=\frac{12\left(2x-1\right)}{x+1}-20\)
13(x+3)+(x+3)(x-3)=6(2x+7)
13x+39+x^2-9-12x-42=0
x^2+x-12=0
x=3 và x=-4
**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!