Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt AC tại D.Kẻ DH vuông góc với BC tại H.
a)chứng tỏ BH=BA
b)Tia HD cắt tia BA tại M.Chứng tỏ BM=BC
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K
a) Chứng minh BA=BH
b)BD vuông góc với AH
c)Chứng minh AB+AC=BC+HK
d)tính góc HAK
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D, kẻ DH vuông
góc với BC ( H ∈ BC), tia HD cắt BA kéo dài tại I.
a) Tính BC biết BA = 3cm, AC = 4cm,
b) Chứng minh ∆ ABD = ∆ HBD,
c) Cho ABC ̂ = 600. Chứng ∆ BCI là tam giác đều,
d) Chứng minh DA< DC.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔBAD=ΔBHD
=>BA=BH
Xét ΔBHI vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBI chung
Do đó: ΔBHI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
Xét ΔBIC cân tại B có \(\widehat{IBC}=60^0\)
nên ΔBIC đều
d: Ta có: DA=DH(ΔBAD=ΔBHD)
DH<DC(ΔDHC vuông tại H)
Do đó: DA<DC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA. Chứng minh DH vuông góc BC
Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
=>\(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
=>DH\(\perp\)HB
=>DH\(\perp\)BC
cho tam giác ABC vuông tại A ( AB> AC), tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC, trên tia AC lấy E sao cho AE= AB, đường thẳng vuông góc với AE tại E cắt tia DH ở K, chứng minh : a) BA= BH ; b) góc DBK = 45độ
a ) xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)
ta có: cạnh huyền BD chung
góc ABD= góc HBD (vì BD là phân giác góc B)
=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)
<=>BA=BH (2 cạnh tương ứng)
: -Kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q.
-Chứng minh được: AB=AE=BQ. Mà theo phần a), ta có: BA=BH => BH=BQ.
=> tam giác BHK= tam giác BQK( cạnh huyền- cạnh góc vuông).
=> góc HBK= góc QBK. Mà theo phần a), ta có: góc ABD= góc DBH.
=> góc DBK= 1/2.góc ABD. Mà góc ABD= 90 độ.
=> góc DBK=45 độ.(đpcm)
cho tam giác ABC vuông tại A ( AB> AC), tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC, trên tia AC lấy E sao cho AE= AB, đường thẳng vuông góc với AE tại E cắt tia DH ở K, chứng minh : a) BA= BH ; b) góc DBK = 45độ
Tam giác ABC vuông tại A.Tia phân giác của góc ABC cắt cạnh AC tại D.Kẻ DE vuông góc Bc tại E
a)cm:Tam giác ABD=Tam Giác EBD Và tam giác BAE Cân
b)Tia ED cắt BA tại F.cm:DE<DF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
Tam giác ABC vuông tại A.Tia phân giác của góc ABC cắt cạnh AC tại D.Kẻ DE vuông góc Bc tại E
a)cm:Tam giác ABD=Tam Giác EBD Và tam giác BAE Cân
b)Tia ED cắt BA tại F.cm:DE<DF
Cho tam giác ABC vuông tại A (AB>AC).Tia phân giác của góc B cắt AC ở D.Kẻ DH vuông góc với BC.Trên Ac lấy E sao cho AE =AB. Đường thẳng vuông góc với AE tại E cắt DH ở K a)chứng minh BA=BH b)tính góc DBK