Thu gọn biểu thức:(x-1).(x²+x+1)-(x+1).(2-x)-x³
A. Bài 4: a, Thu gọn biểu thức -1/x2yz +5x2yz - x2yz và tính giá trị biểu thức tại x = -1, y = 2 và z = -1
B. b, Thu gọn biểu thức –x 2 z + 3x2 z – 7x2 z và tính giá trị biểu thức tại x = -1, z = -2
c, Thu gọn biểu thức 5xy2 + 0,5xy2 – 3xy2 và tính giá trị biểu thức tại x = 2, y =1 d, Thu gọn biểu thức -2y2 z 2 + 8y2 z 2 – y 2 z 2 và tính giá trị biểu thức tại y = -2, z = 0
Bài 4:
b: \(=x^2z\left(-1+3-7\right)=-5x^2z=-5\cdot\left(-1\right)^2\cdot\left(-2\right)=10\)
c: \(=xy^2\left(5+0.5-3\right)=2.5xy^2=2.5\cdot2\cdot1^2=5\)
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
giải bài tập toán : thu gọn biểu thức :A=(x-1)^2+(x+1)^2-(x-1)(x+1)
\(A=\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right).\left(x+1\right)=x^2-2x+1+x^2+2x+1-x^2-1=x^2-1\)
Cho hai biểu thức A=\(\dfrac{\sqrt{X}+2}{x-\sqrt{x}}\) và B=\(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{x+3}{x-1}\) với x>0,x≠1
a. thu gọn biểu thức M=A:B
b.tìm x sao cho M>1
\(a,M=\left(\dfrac{\sqrt{x}+2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{x+3}{x-1}\right)\\ =\left(\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}-1\right)+x+3}{x-1}\right)\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1-x+\sqrt{x}+x+3}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\sqrt{x}+4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
`b,` Để `M>1` Thì :
\(\dfrac{\sqrt{x}+1}{2\sqrt{x}}>1\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}}-1>0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-2\sqrt{x}}{2\sqrt{x}}>0\\ \Leftrightarrow\dfrac{-\sqrt{x}+1}{2\sqrt{x}}>0\)
\(\Leftrightarrow-\sqrt{x}+1>0\) `(` Vì \(2\sqrt{x}>0\) do \(x>0\) `)`
\(\Leftrightarrow-\sqrt{x}>-1\\ \Rightarrow x< 1\)
Cho biểu thức M=\(x^3+3xy^2-2xy+x^3-xy-2xy^2+1\)
a) thu gọn biểu thức M
b) tính giá trị biểu thức khi x=-1 ; y=2
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
\((\dfrac{6\sqrt{x}+6}{x+2\sqrt{x}-3}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}):\dfrac{1}{\sqrt{x}+3}\)
Thu gọn biểu thức
ĐKXĐ: \(x\ge0,x\ne1\)
\(\left(\dfrac{6\sqrt{x}+6}{x+2\sqrt{x}-3}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}+3}\)
\(=\left(\dfrac{6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right).\left(\sqrt{x}+3\right)\)
\(=\dfrac{6\sqrt{x}+6-\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}.\left(\sqrt{x}+3\right)\)
\(=\dfrac{-x+\sqrt{x}}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
Thu gọn
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
Và tìm x để biểu thức trên max
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
b) Ta có: \(x\ge0\Rightarrow x+\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{x+\sqrt{x}+1}\le2\)
\(\Rightarrow max=2\) khi \(x=0\)
Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
thu gọn biểu thức( x +2)^2-(x+4)^2 + x^2-3x+1
\(\left(x+2\right)^2-\left(x+4\right)^2+x^2-3x+1\)
\(=x^2+4x+4-x^2-8x-16+x^2-3x+1\)
\(=x^2-7x-11\)
\(\left(x+2\right)^2-\left(x+4\right)^2+x^2-3x+1\)
\(=x^2+4x+4-x^2-8x-16+x^2-3x+1=x^2-7x-11\)
Thu gọn biểu thức sau:2(x-1)-3(-2+x)-5(-x-3)-10(x-2)