Cho số a.b là các số nguyên thỏa mãn (14a-35b+5)( 2a-3b+5)\(⋮\)7.CM 45a+13b+11\(⋮\)7
cho các số a,b thỏa mãn với đẳng thức (14a-35b+5)(2a-3b+5)\(⋮\)7.CM (45a-3b+11)\(⋮\)7
B1. Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.
B2 . Cho a,b là các số nguyên thỏa mãn \(\left(5a-35b+12\right).\left(2a-7b+3\right)⋮5\). CMR \(42a-2b-7⋮5\)
a) ĐẶT \(A=\frac{7n-8}{2n-3}=\frac{7n-\frac{21}{2}+\frac{5}{2}}{2n-3}=\frac{\frac{7}{2}\left(2n-3\right)+\frac{5}{2}}{2n-3}=\frac{7}{2}+\frac{\frac{5}{2}}{2n-3}\)
Để A có GTLN\(\Leftrightarrow\frac{\frac{5}{2}}{2n-3}\)có GTLN
\(\Leftrightarrow2n-3\)có GTNN \(2n-3>0\)
\(\Leftrightarrow2n-3=1\)
\(\Leftrightarrow2n=4\)
\(\Leftrightarrow n=2\)
Vậy A có GTLN là 6 khi x=2
b) Ta có: \(\left(5a-3b+12\right)\left(2a-7b+3\right)⋮5\)
MÀ \(\left(5a-3b+12\right)̸⋮5\)(vì 12 ko chia hết cho 5)
\(\Rightarrow2a-7b+3⋮5\)
\(2a-2b-5b+3⋮5\)
MÀ \(5b⋮5\)
\(\Rightarrow2a-2b+3⋮5\)
Và \(40a-10⋮5\)
\(\Rightarrow2a-2b+3+40a-10⋮5\)
\(\Rightarrow42a-2b-7⋮5\left(ĐPCM\right)\)
bài 3 : với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3 =24+(3a+b-c)+(3b+c-a)^3 +(3c+a-b)^3
CM : (a+2b)(b+2c)(c+2a)=1
bài 4 : CM với n là số nguyên dương thì : 5^n(5^n+3^n)-2^n(9^n+11^n) chia hết cho 21
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Cho a,b là các số nguyên thỏa mãn (7a-21b+5) . (a-3b+1) chia hết cho 7. Chứng minh 43a+11b+15 chia hết cho 7
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
Cho các số nguyên a,b.Chứng minh rằng
a)2a+3b chia hết cho 13 khi và chỉ khi 5a+b chai hết cho 13
b)4a+3b chia hết cho 11 khi và chỉ khi 7a-3b chia hết cho 11
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
cho a.b là các số nguyên thỏa mãn : (2a+7b) chia hết cho 3
Cho a,b là các số nguyên thỏa mãn
(14a - 7b + 4)(4a +2b + 1) chia hết cho 7
Chứng minh rằng: (25a -12b +8 ) chia hết cho 7
\(14a-7b+4=7\left(2a-b+1\right)-3⋮7̸\)\(\Rightarrow4a+2b+1⋮7\Leftrightarrow4a+21a+2b-14b+1+7⋮7\Leftrightarrow25a-12b+8⋮7\)
\(14a-7b+4=7\times\left(2a-b\right)+4⋮̸7\)
\(\left(14a-7b+4\right)\left(4a+2b+1\right)⋮7\)
\(\Rightarrow4a+2b+1⋮7\)
\(21a-14b+7⋮7\)
\(\Rightarrow\left(4a+2b+1\right)+\left(21a-14b+7\right)⋮7\)
\(\Rightarrow\left(4a+21a\right)-\left(14b-2b\right)+\left(1+7\right)⋮7\)
\(\Rightarrow25a-12b+8⋮7\)
1.Chứng minh nếu n ∈ N* thì
\(25^n+7^n-4^n\left(3^n+5^n\right)\) chia hết cho 65
2.cho a,b là hai số nguyên dương phân biệt thỏa mãn \(2a^2+a=3b^2+b\)
chứng minh a-b và 2a+2b+1 là các số chính phương
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh