chứng minh rằng n+2019/n+2020 là phân số tối giản
Chứng minh rằng:\(\frac{n+2019}{n+2020}\) là phân số tối giản
(mình ....... các bạn làm câu này)
Gọi ƯCLN(n + 2019 ; n + 2020) = d \(\left(d\inℕ^∗\right)\)
=> \(\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}\Rightarrow n+2020-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> \(\frac{n+2019}{n+2020}\)là phân số tối giản
\(\frac{n+2019}{n+2020}\)
+) Gọi d = ƯCLN ( n + 2019 ; n+2020 ) ( d là số tự nhiên )
\(\Rightarrow\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}}\)
\(\Rightarrow n+2020-n+2019⋮d\)
\(\Rightarrow1⋮d\)
Mà d là số tự nhiên
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) ( n+2019; n+2020 ) =1
\(\Rightarrow\) P/s \(\frac{n+2019}{n+2020}\) tối giản
@@ Học tốt @@
## Chiyuki Fujito
2 người đúng nhưng thiếu dấu ngoặc
VD:(n+2019)\(⋮\) d
ko thôi sẽ nghỉ 2019 \(⋮\) d
vì mình đã làm nhiều lần rồi nên biết nhưng mình sẽ cho bạn làm xong đầu tiên 1 t
i
c
k
Chứng minh \(\frac{n+2019}{n+2020}\) là phân số tối giản
Thật ra mình biết làm rồi chỉ muốn đố thôi
Ai nhanh mình tick
Mình cũng là cn của nick trên muốn gợi ý cho các bạn 2 số này là 2 số nguyên tố cùng nhau chỉ cần chứng minh như vậy
chứng tỏ rằng mọi phân số có dạng n+2018/n+2019 [ n thuộc N ] đều là phân số tối giản
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
Mình đưa ví dụ nhé:
n= 1
=> n+2018/n2019 = 2019/2020
Bạn thấy đó 2018/ 2019 là phân số tối giản nếu cùng cộng cả tử và mẫu với bao nhiêu đi nữa thì nó cung sẽ luôn tối giản.
ví dụ như; n+2/n+3
n=6
=> 8/9
1.Cho 51 số nguyên dương khác nhau và đều nhỏ hơn 100. Chứng minh rằng có thể chọn ra 3 số a,b,c trong 51 số đã cho thỏa mãn hệ thức a=b+c
2.Tìm số tự nhiên n nhỏ nhất để các phân số \(\frac{n+7}{3};\frac{n+8}{4};...;\frac{n+2019}{2015};\frac{n+2020}{2016}\)
đều là các phân số tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng phân số n/n+1 là phân số tối giản với mọi n thuộc N*
Gọi \(d=ƯC\left(n;n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Rightarrow n+1-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\) phân số \(\dfrac{n}{n+1}\) là phân số tối giản
chứng minh rằng các phân số n+9/n+10 là các phân số tối giản
Gọi ước chung lớn nhất của n + 9 và n + 10 là: d
Ta có: \(\left\{{}\begin{matrix}n+9⋮d\\n+10⋮d\end{matrix}\right.\)
⇒ (n + 10) - (n + 9) ⋮ d
n + 10 - n - 9 ⋮ d
1 ⋮ d
⇒ d = 1
Hay phân số \(\dfrac{n+9}{n+10}\) là phân số tối giản.
Chứng minh rằng n phần n-8 là phân số tối giản?
Đề sai rồi bạn vì nếu n=2 thì \(\dfrac{n}{n-8}=\dfrac{2}{2-8}\) không phải là phân số tối giản nha
Chứng minh rằng phân số n+1/2n+3 là tối giản (n ∈ N)
Giả sử n+1 chia hết cho x --> 2n+2 chia hết cho x
2n+3 chia hết cho x
==> (2n+3)- (2n+2) chia hết cho x ==> 1 chia hết cho x tức là x=1 nên n+1 và 2n+3 chỉ có ước chung là 1 vì vậy mà phân số trên tối giản
Thiếu đề bài bạn ơi bạn đọc lại coi nào