Cho tam giác ABC nhọn. Dựng ra phía ngoài hai tam giác đều ABE; ACF, lại dựng hình bình hành AEPF. Chứng minh rằng PBC là tam giác đều.
GIÚP MK VS!!!
cho tam giác ABC nhọn . dựng ra phía ngoài hai tam giác đều ABE,ACF lại dựng hbh AEPF . CMR PBC là tam giác đều
Cho tam giác \(ABC\) nhọn. Dựng ra phía ngoài hai tam giác đều \(ABE\); \(ACF\), lại dụng hình bình hành \(AEPF\). Chứng minh rằng \(PBC\) là tam giác đều.
Gọi M là giao điểm của PE với AB.
Ta thấy rằng \(CF=AF=PE,PF=AE=EB\)
Đồng thời \(\widehat{BEP}=60^o-\widehat{AEP}=60^o-\widehat{AFP}=\widehat{PFC}\)
Dẫn đến \(\Delta PBE=\Delta CPF\left(c.g.c\right)\)
\(\Rightarrow PB=PC\) (1)
Mặt khác, \(\widehat{AMF}=\widehat{MAE}=60^o=\widehat{ACF}\) nên tứ giác AMCF nội tiếp.
\(\Rightarrow\widehat{BAC}=\widehat{PFC}\). Mà lại có \(AB=PF,AC=FC\) nên suy ra \(\Delta ABC=\Delta FPC\left(c.g.c\right)\)
\(\Rightarrow PC=BC\) (2)
Từ (1) và (2) \(\Rightarrow\Delta PBC\) đều (đpcm)
Cho tam giác ABC nhọn. Dựng ra phía ngoài 2 tam giác đều ABE, ACF, lại dựng hbh AEPF. CMR PBC là tam giác đều
cho tam giác nhọn ABC . dựng phía ngoài tam giác 2 tam giác đều ABE,ACF lại dựng hbh AEPF . cmr PBClà tam giác đều
ta có : góc EBN = góc FCA(1)
lại có : góc EBC = 90 độ ; FCB = 90 độ
=> EBC = FBC (2)
từ (1) và (2) suy ra:
góc PBC = góc PCB
tiếp tục có:
\(\widehat{BPH}+\widehat{CPH}=2.\widehat{EBP}\)
mà \(2.\widehat{EBP}=\widehat{PBC}\)
\(\Rightarrow\widehat{BPH}+\widehat{CPH}=\widehat{PBC}\)
\(mà\widehat{BPH}+\widehat{CPH=}\widehat{BPC}\)
\(\Rightarrow\widehat{PBC}=\widehat{PBC}=\widehat{PCB}\)
từ đó suy ra : tam giác PBC là tam giác đều
( bn không hỉu chỗ nào thì hỏi lại mình nhe)
Theo hình vẽ thì $PBC$ làm sao mà là tam giác đều được nhỉ?
cho tam giác ABC nhọn. Dựng phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE với CD. Chứng minh tam giác ADC = tam giác ABE
Cho tam giác ABC nhọn. Dựng ra phía ngoài tam giác này các tam giác đều ABE và ACF gọi M, N lần lượt là trung điểm của AE và CF. Trên cạnh BC lấy D sao cho CD = ¼ BC. Chứng minh DN vuông góc DM .
Cho tam giác ABC dựng phía ngoài tam giác các tam giác đều ABE và ACF rồi dựng hình bình hành AEDF. Cm tam giác BCD đều
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
Cho tam giác ABC nhọn. Dựng ra phía ngoài tam giác này các tam giác đều ABE và ACF. Gọi M và N lần lượt là trung điểm của AE và CF. Trên cạnh BC lấy điểm D sao choCD=1/4BC. Chứng minh rằng DM vuông góc DN
LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC
XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ
OI = AB/2=AE/2=AM
OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)
GÓC FOI = GÓC MAN = 90 + GÓC A
=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)
=> FI = DM
=> GÓC OFI = GÓC MNA
=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC
= 90 - GÓC OFI - GÓC IFC
= 90 - 30 = 60
LẠI CÓ FI = ND/2
FI = MD
=> MD = ND/2
MÀ GÓC MND = 60
-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU
=> DM VUÔNG GÓC DN
????????????????????????????????????????
☺️ ☺️ ☺️ ☺️ ☺️ ☺️
Cho tam giác ABC có AB<AC và góc A nhọn. Dựng ra phía ngoài tam giác ABC hai tam giác vuông ở A là tam giác ABE và tam giác ACD sao cho AB=AE;AD=AC
A
a) Chứng minh BD=CE
b) CE cắt BA và BD lần lượt tại I và O. Chứng minh CE⊥BD
Các bạn vẽ hình hộ mình luôn nhé
cho tam giác ABC nhọn.Dựng phía ngoài 2 tam giác đều ABE,ACF,dựng hbh APEF .Chứng minh PBC là tam giác đều.
tic cái nha do ngoc thanh