cho tam giác abc cân tại a và tia phân giác của góc a cắt bc ở h
a.cmr tam giác abh = tam giác ach
b.cmr ah vuông góc vs bc
c kẻ hd vuông góc vs ab( d thuộc ab và he vuông góc vs ac( e thuộc ac).cmr de song song với bc
cho tam giác ABC có AB=AC, tia phân giác góc A cắt BC ở H.
a) CM: tam giác ABH= tam giác ACH
b) CM: AH vuông góc BC
c) vẽ HD vuông góc BC (D thuộc AB) và HE vuông góc AC (E thuộc AC). CM: DE//BC
Bài 15: Cho tam giác ABC cân tại A kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh: tam giác ABH = tam giác ABH suy ra AH là tia phân giác của góc BAC.
b) Kẻ HD vuông góc AB (D thuộc AB), HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE cân.
c) Nếu cho AB = 29 cm, AH= 20 cm. Tính độ dài cạnh BC?
d) Chứng minh BC // DE.
e) Nếu cho góc BAC = 120° thì tam giác HDE trở thành tam giác gì? Vì sao?
GIÚP MK VS
Cho tam giác ABC có AB=AC và tia phân giác góc A cắt BC ở H.
a) Cm: tam giác ABH= tam giác ACH
b)Cm AH vuông góc với BC
c) Vẽ HD vuông góc với AB (D thuộc AB) và HE vuông góc với AC (E thuộc AC). CM: DE song song với BC
a, xét tam giác ABH à tg ACH có AH chung
^BAH = ^CAH do AH là pg
AB = AC (gt)
=> tg ABH = tg ACH (c-g-c)
b, tg ABH = tg ACH (câu a )
=> ^AHC = ^AHB
mà ^AHC + ^AHB = 180
=> ^AHC = 90
=> AH _|_ BC
c, xét tam giác ADH và tam giác AEH có : AE chung
^ADH = ^AEH = 90
^bah = ^cah
=> Tg ADH= tg AEH (ch-gn)
=> AE = AD
=> tg AED cân tại A => ^ADE = (180 - ^BAC) : 2
tg ABC cân tại A => ^ABC = (180 - ^bac) : 2
=> ^ade = abc
mà ^ade đồng vị ^abc
=> de // bc
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Kẻ AH vuông góc BC ( H thuộc BC)
a) chứng minh tam giác ABH = tam giác ACH
b) Tính độ dài AH
c) Từ H kẻ HD vuông góc với AB (D thuộc AB) kẻ HE vuông góc vs AC ( E thuộc AC). Chứng minh AH là đường trung trục của DE
cho tam giác cân ABC có ABC : AB=AC=10cm , BC=12cm , gọi AH là tia phân giác góc A (H thuộc BC)
a. CM BH=HC và AH vuông góc BC
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB) HE vuông góc AC (E thuộc AC).Hỏi tam giác DHE là tam giác gì ?
d. CM DE//BC
Giúp mình với ạ 😭✨
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc vs AB, HE vuông góc vs AC ( D thuộc AB , E thuộc AC ) CMR :
a. góc C = góc ADE
b. gọi M là trung điểm của BC . CMR : AM vuông góc vs DE
Cho tam giác ABC cs AB=AC=5cm, BC=8cm. Kẻ AH vuông góc vs BC (H€BC).
a, CMR HB=HC và góc BAH=góc CAH.
b, Tính AH
c, Kẻ HD vuông góc vs BC (D€AB). Kẻ HE vuông góc vs AC (E€AC). CMR tam giác HDE cân
a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma )
Mà HB + HC = BC
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42 = 9
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H
cho tam giác ABC cân ở A có AB=AC=5cm; kẻ AH vuông góc vs BC ( H thuộc BC)
a, CM BH=HC và BAH = CAH
b, tính độ dài BH biết AH = 4cm
c, kẻ HD vuông góc vs AB( D thuộc AB), kẻ EH vuông góc vs AC( E thuộc AC)
d, tam giác ADE là tam giác gì? vì sao?
a, Ta có ∆ABC cân ở A(gt)
AH\(\perp\) BC=>AH là đường cao
(1)=>AH đồng thời là trung tuyến=>HB=HC
(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH
b, Áp dụng định lí pyta go cho ∆ABH ta có
AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3
d, Xét ∆DHB và ∆EHC có
Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)
Góc B=góc C ( tam giác ABC cân tai A gt)
HB =HC (cmt)
=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) b) Kẻ HD vuông góc với AB (D thuộc AB) ;HE vuông góc với AC (E thuộc AC) . CMR Tam giác HDE là tam giác cân
b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có
BA=CA(ΔBAC cân tại A)
AH chung
Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)