Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vịt Biết Gáyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2021 lúc 13:06

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(gt)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)

Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-HB^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

bui phuong loan
Xem chi tiết
An ngọc lâm
23 tháng 2 2018 lúc 20:03

 a)xét tam giác vuông ABH và tam giác vuông  ACH có

cạnh AB chung

AB=AC

do đó tam giác vuông ABH = tam giác vuông  ACH (cạnh huyền - cạnh góc vuông)

=>HB=HC

b) ta có 

HC=HB

mà BC= 8 

=> HC=4

áp dụng định lí Py-ta-go vào tam giác vuông AHC có

AC2 . HC2 =AH2

hay AH2 = 5. 42=400

=>AH=20

Chu Minh
Xem chi tiết
Watashi no shekai
10 tháng 7 2021 lúc 20:00

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

NGÔ BẢO NGÂN
Xem chi tiết
Minh Nguyen
8 tháng 2 2020 lúc 13:53

ABCH20cm16cm5cm

Áp dụng định lí Pythagoras vào △ABH, ta có :

        AB2 = AH2 + BH2

\(\Rightarrow\)202 = AH2 + 162

\(\Rightarrow\)AH2= 144

\(\Rightarrow\)AH  = 12

Áp dụng định lí Pythagoras vào △AHC, ta có :

         AC2 = AH2 + HC2

\(\Rightarrow\)AC2 = 122 + 52

\(\Rightarrow\)AC2 = 169

\(\Rightarrow\)AC   = 13

Vậy AH = 12 cm

       AC = 13 cm

Khách vãng lai đã xóa
Lê Thủy Anh
Xem chi tiết
Võ Thạch Đức Tín 1
1 tháng 2 2016 lúc 8:57

:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

Võ Thạch Đức Tín 1
1 tháng 2 2016 lúc 8:57

Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

Ely Christina
Xem chi tiết

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

Bùi Lan Anh
Xem chi tiết
Trần Mạnh
25 tháng 2 2021 lúc 17:37

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:45

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2019 lúc 13:53

Sách Giáo Khoa
Xem chi tiết
Tâm Trần Huy
20 tháng 4 2017 lúc 16:12

Ta có:

AC2= AH2+HC2=122+162=144+156=400.

=> AC=20(cm )

BH2=AB2-AH2=132-122

=169 - 144 = 25 => BH=5(cm)

Do đó BC=BH+HC=5+16=21(cm)



Nguyễn Thị Thảo
22 tháng 4 2017 lúc 8:40


Ta có:

AC2= AH2+HC2=122+162=144+156=400.

=> AC=20(cm )

BH2=AB2-AH2=132-122

=169 - 144 = 25 => BH=5(cm)

Do đó BC=BH+HC=5+16=21(cm)


le tien phuong
15 tháng 1 2019 lúc 17:58

Hỏi đáp Toán