Cho tam giác ABC có Â, B nhọn . Kẻ AH vuông góc BC , Biết AC = 15 cm ,HB =5 cm , HC=9 cm . Tính độ dài AB
LÀM ƠN CỨU TUI VS HU HU
Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H BC)
a) Chứng minh : HB = HC và =
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( DAB), kẻ HE vuông góc với AC(EAC). Chứng minh : DE//BC
Làm hộ iem câu c ;-;
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(gt)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng)
Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-HB^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
cho tam giác abc cân tại a xo ab=ac=5 cm, bc=8cm. kẻ ah vuông góc vs bc ( h thuộc bc )
1) cm hb=hc
2)tính độ dài ah
3) kẻ hd thuộc ab
kẻ HE vuông góc vs AC
cm tam giác HDE cân
4) từ b,c kẻ các đường vuông góc vs ab và ac chúng cắt nhau tại M. cm 3 điểm a,h, m thẳng hàng
a)xét tam giác vuông ABH và tam giác vuông ACH có
cạnh AB chung
AB=AC
do đó tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
=>HB=HC
b) ta có
HC=HB
mà BC= 8
=> HC=4
áp dụng định lí Py-ta-go vào tam giác vuông AHC có
AC2 . HC2 =AH2
hay AH2 = 52 . 42=400
=>AH=20
cho tam giác ABC có góc BAC>90 độ . Kẻ AH vuông góc BC tại H. Biết AB=15 cm, AC=41 cm, BH=12 cm . Tính độ dài cạnh HC
Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có:
AB2= BH2 + AH2
<=> 152= 122+ AH2
<=> AH2= 152- 122= 225- 144= 81
<=> AH= 9 (cm)
Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .
AC2= AH2+ HC2
<=> 412= 92+ HC2
<=> HC2= 412- 92= 1681- 81= 1600
<=>HC= 40 (cm)
Cho tam giác ABC có góc B,C nhọn kẻ AH vuông góc với BC . Biết AB =20 cm , BH = 16 cm , HC =5 cm . Tính AH ,AC
Áp dụng định lí Pythagoras vào △ABH, ta có :
AB2 = AH2 + BH2
\(\Rightarrow\)202 = AH2 + 162
\(\Rightarrow\)AH2= 144
\(\Rightarrow\)AH = 12
Áp dụng định lí Pythagoras vào △AHC, ta có :
AC2 = AH2 + HC2
\(\Rightarrow\)AC2 = 122 + 52
\(\Rightarrow\)AC2 = 169
\(\Rightarrow\)AC = 13
Vậy AH = 12 cm
AC = 13 cm
cho tam giác ABC có AB =AC = 5 cm. BC = 8 cm. kẻ AH vuông góc với BC ( H thuộc BC ) a. C/m HB = HC và góc CAH = góc BAH b. tính độ dài AH c. Kẻ HD vuông góc với AV (D thuộc ÂB ) kẻ HE vuông góc với AC ( E thuộc AC ) chứng minh DE// BC
:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
Cho tam giác ABC có AB = AC = 5 cm; BC = 8 cm. Kẻ AH vuông góc BC (H thuộc BC)
a) Chứng minh HB = HC và góc BAH = góc CAH
b) Tính độ dài AH.
c) Kẻ HD vuông góc AB (D thuộc AB); HE vuông góc AC (E thuộc AC). Chứng minh rằng: tam giác HDE cân.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
cho tam giác ABC có AH Vuông góc với BC , biết AH = 12 cm , BH = 9 cm , AC = 20 cm , AH vuông góc với BC
a/ tính độ dài các đoạn thẳng AB , HC
b/ tam giác ABC là tam giác gì ? vì sao
mong các bạn giúp mk nha mk cảm ơn
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Cho tam giác ABC có B A C ^ > 90 ° . Kẻ AH vuông góc với BC tại H. Biết AB = 15 cm; AC = 41 cm, BH = 12 cm. Tính độ dài cạnh HC.
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (\(H\in BC\)). Cho biết AB = 12 cm, AH = 12 cm, HC = 16 cm. Tính các độ dài AC, BC ?
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)