Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thanh ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2020 lúc 12:51

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

phan thanh ngan
30 tháng 8 2020 lúc 12:00
https://i.imgur.com/VAewh4D.jpg
phan thanh ngan
31 tháng 8 2020 lúc 11:56

Giúp mik vs ạ.Mik đag cần

Thịnh chu
Xem chi tiết
trần thùy dương
Xem chi tiết
nhok họ nguyễn
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Bùi Xuân Doanh
Xem chi tiết
banhbaomo
Xem chi tiết
CEO
21 tháng 8 2015 lúc 16:56

Ta có: \(y=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}\Leftrightarrow3y=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{98}}\)

\(\Leftrightarrow3y-y=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{99}\right)\)

\(\Leftrightarrow2y=1-\frac{1}{3^{99}}

Nguyễn ngọc Khế Xanh
Xem chi tiết
OH-YEAH^^
25 tháng 7 2021 lúc 13:33

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A<\(1-\dfrac{1}{100}=\dfrac{99}{100}\)(đpcm)

Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2.3},\dfrac{1}{3^2}>\dfrac{1}{3.4},...,\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

A>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

A>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

A>\(\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)(đpcm)

Vậy \(\dfrac{99}{100}>A>\dfrac{99}{202}\)

 
Trân Nguyễn
Xem chi tiết
hihi
Xem chi tiết
Bùi Hoàng Hải
Xem chi tiết
Đoàn Trần Quỳnh Hương
26 tháng 12 2022 lúc 13:20

Gọi biểu thức trên là A

3A = 1 + 1/3 + 1/3^2 + … + 1/3^98`

3A – A = ( 1 + 1/3 + 1/3^2 + … + 1/3^98 ) – ( 1/3 + 1/3^2 + 1/3^3 + … + 1/3^99 )`

2A = 1 – 1/3^99

A = \(\dfrac{1-\dfrac{1}{3^{99}}}{2}\)