Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GPSgaming
Xem chi tiết
Đinh Đức Hùng
12 tháng 9 2017 lúc 22:14

\(E=5x^2+8xy+5y^2-2x+2y\)

\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2-2\ge-2\) có GTNN là - 2

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

Vậy \(E_{min}=-2\) tại \(x=1;y=-1\)

Dam Do Dinh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 8 2020 lúc 19:00

G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020

G = ( 4x2 + 8xy + 4y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) + 2018

G = ( 2x + 2y )2 + ( x - 1 )2 + ( y + 1 )2 + 2018

\(\hept{\begin{cases}\left(2x+2y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

=> MinG = 2018 <=> x = 1 ; y = -1

Khách vãng lai đã xóa
đỗ gia định
Xem chi tiết
Dam Do Dinh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 8 2020 lúc 17:42

F = 5x2 + 2y2 + 4xy - 2x + 4y + 8

F = ( 4x2 + 4xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 3

F = ( 2x + y )2 + ( x - 1 )2 + ( y + 2 )2 + 3

\(\hept{\begin{cases}\left(2x+y\right)^2\\\left(x-1\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinF = 3 <=> x = 1 , y = -2

G = 5x2 + 5y2 + 8xy + 2y + 2020

= x2 + ( 4x2 + 8xy + 4y2 ) + ( y2 + 2y + 1 ) + 2019

= x2 + ( 2x + 2y )2 + ( y + 1 )2 + 2019

\(\hept{\begin{cases}x^2\\\left(2x+2y\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow x^2+\left(2x+2y\right)^2+\left(y+1\right)^2+2019\ge2019\forall x,y\)

Tuy nhiên đẳng thức không xảy ra :P

Khách vãng lai đã xóa
Tin Huynh Trung
Xem chi tiết
Dam Do Dinh
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 8 2020 lúc 21:13

\(G=5x^2+5y^2+8xy+2y-2x+2020\)

\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+2018\)

\(=\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\)

Đẳng thức xảy ra tại x=1;y=-1

Vậy..............

Khách vãng lai đã xóa
Mai Thành Đạt
Xem chi tiết
Trần Nguyễn Khánh Linh
13 tháng 1 2018 lúc 21:07

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

Kiệt Nguyễn
12 tháng 7 2020 lúc 10:15

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

Khách vãng lai đã xóa
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Tuấn Phạm Minh
Xem chi tiết