Những câu hỏi liên quan
nguyenvanviet
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Đặng Ngọc Quỳnh
27 tháng 9 2020 lúc 18:48

Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)

Áp dụng BĐT AM-GM ta có:

\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)

Suy ra BĐT đã cho là đúng nếu ta chứng minh được

\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)

Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)

Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
27 tháng 9 2020 lúc 18:59

Bài 3:

Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)

Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)

Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:

\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)

Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề

Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
KCLH Kedokatoji
27 tháng 9 2020 lúc 21:56

Wow bạn giỏi quá, đúng những bđt mình muốn thấy! Nhưng mà bạn làm được phần cuối không, tại mình chưa giải được.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
Xem chi tiết
The Thong's VN Studi...
2 tháng 10 2019 lúc 19:08

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả

Bình luận (0)
nub
Xem chi tiết
tth_new
31 tháng 5 2020 lúc 18:37

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

Bình luận (0)
 Khách vãng lai đã xóa
Mai Ngoc
Xem chi tiết
Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:47

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

Bình luận (0)
Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:54

Sửa lại: \(\frac{a-c}{b+c}\)

Bình luận (0)
BT thánh
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Ngọc
5 tháng 9 2016 lúc 20:30

Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )

=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)

=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)

<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )

<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)

Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)

Làm 2 BĐT tương tự rồi cộng vào => Đpcm 

Bình luận (0)
Lê Nguyên Hạo
5 tháng 9 2016 lúc 19:45

câu hỏi hay, éo biết làm =)

Bình luận (0)
Thảo
5 tháng 9 2016 lúc 20:04

wow! 

mik mới bị trừ 280 xong, các bn giúp mik nha

Cảm ơn trc

Bình luận (0)
Lê Ngọc Diệp
Xem chi tiết
Không Tên
19 tháng 1 2018 lúc 20:18

Để 1 phân số được xác định thì mẫu số của chúng phải khác 0

                                                   BÀI LÀM 

ĐKXĐ:            \(\left(x-1\right)\left(-2x+8\right)\ne0\)

       \(\Leftrightarrow\)\(-2\left(x-1\right)\left(x-4\right)\ne0\)

      \(\Leftrightarrow\)  \(\orbr{\begin{cases}x-1\ne0\\x-4\ne0\end{cases}}\)

     \(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy....

Bình luận (0)
Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 20:45

\(ab+bc+ca=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

\(Q=\frac{a^2+c^2-c^2}{a\left(c^2+a^2\right)}+\frac{b^2+a^2-a^2}{a\left(a^2+b^2\right)}+\frac{c^2+b^2-b^2}{b\left(b^2+c^2\right)}\)

\(Q=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{c^2+a^2}\right)\)

\(Q\ge3-\left(\frac{a}{2ab}+\frac{b}{2bc}+\frac{c}{2ca}\right)=3-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

\(Q_{min}=\frac{3}{2}\) khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa