Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Quốc Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 9:35

\(\dfrac{x-1}{-10}=\dfrac{-7}{y}=\dfrac{z+5}{3}=\dfrac{-2}{4}=\dfrac{-1}{2}\)

=>x-1=5 và 7/y=1/2 và z+5=-3/2

=>x=6 và y=14 và z=-13/2

Nguyễn đông an
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Dream
25 tháng 8 2021 lúc 18:29

Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
các bạn I love you
Xem chi tiết
Giang Hồ Đại Ca
29 tháng 8 2016 lúc 7:46

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

Phùng Minh Quân
1 tháng 3 2018 lúc 20:19

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

=\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

Có \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=\(\frac{1}{1}-\frac{1}{100}\)

=\(\frac{99}{100}\)

Vì \(\frac{99}{100}< 1\) 

mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<1

Vậy.....

Khách vãng lai đã xóa