Những câu hỏi liên quan
Phạm Hà Chi
Xem chi tiết
alibaba nguyễn
21 tháng 9 2018 lúc 8:51

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

Bình luận (0)
Kiệt Nguyễn
25 tháng 5 2020 lúc 19:22

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
25 tháng 5 2020 lúc 20:42

\(\sqrt[3]{yz\cdot1}\le\frac{y+z+1}{3};\sqrt[3]{xz\cdot1}\le\frac{x+z+1}{3};\sqrt[3]{yx\cdot1}\le\frac{y+x+1}{3}\)

Nên \(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{y+x+1}\right)\)\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=B\)

\(B\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x+y+z}\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3\ge xy+yz+zx\)

do \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3=x^2+y^2+z^2;xy+yz+zx\le x^2+y^2+z^2=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Kaneki Ken
Xem chi tiết
ღ๖ۣۜLinh
12 tháng 3 2020 lúc 18:11

Uầy đề sai đâu ta

\(A=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bđt AM-GM ta có

\(A\le\frac{y}{x+y}+\frac{z}{x+z}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{x}{x+z}+\frac{y}{y+z}=3\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{2020}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kaneki Ken
12 tháng 3 2020 lúc 18:21

Cứ tưởng áp dụng Cô si cho 2 tổng ở mẫu thôi :) quên là còn áp dụng như này :) nhưng bạn còn sai 1 chỗ nhé 

\(\sqrt{a.b}\le\frac{a}{2}+\frac{b}{2}.\) MaxA =3/2 :v

Bình luận (0)
 Khách vãng lai đã xóa
ღ๖ۣۜLinh
12 tháng 3 2020 lúc 18:33

ờ haaa :P đôi lúc lú lẫn

Sorry ha

Học tốt!!!!!!!

Bình luận (0)
 Khách vãng lai đã xóa
Ngô Thị Thu Trang
Xem chi tiết
Ngo Thi Thu Trang
14 tháng 11 2015 lúc 12:41

sao co ten giong minh qua

Bình luận (0)
Cù Thị Mỹ Kim
17 tháng 2 2016 lúc 23:26

thay 2016=xy+yz+xz vào các mẫu 
dùng Cô-Si đảo vào từng phân số 
sẽ dễ dàng chứng minh đc :D

Bình luận (0)
Phúc
13 tháng 12 2017 lúc 20:54

Ta có

\(\sqrt{\frac{yz}{x^2+2016}}=\sqrt{\frac{yz}{x^2+yz+xy+xz}}\)

                              =\(\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}\)\(\le\frac{1}{2}.\frac{y}{x+y}+\frac{1}{2}.\frac{z}{x+z}\)

Tương tự \(\sqrt{\frac{xy}{y^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{y+x}+\frac{y}{y+z}\right)\)

              \(\sqrt{\frac{xz}{z^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{z+x}+\frac{z}{z+y}\right)\)

=> \(VT\)\(\le\)\(\frac{1}{2}\)(\(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}\)+\(\frac{y}{y+z}+\frac{z}{y+z}\))

                       =\(\frac{3}{2}\)(\(ĐPCM\))

Bình luận (0)
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Kiệt Nguyễn
11 tháng 10 2020 lúc 10:08

Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)

Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1

Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1

Dự đoán MaxP = 1 khi c = t = k = 1

Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
Edogawa Conan
11 tháng 10 2020 lúc 10:13

Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)

CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)

Từ (1), (2) và (3) cộng vế theo vế ta có:

\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)

=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)

Dấu "=" xảy ra <=> x = y = z

Vậy MaxP = 1 <=> x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
11 tháng 10 2020 lúc 10:19

một bài khá hay :)

Ta có \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=1-\frac{x}{x+2\sqrt{yz}}\le1-\frac{x}{x+y+z}\left(1\right)\)

 Tương tự \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}=1-\frac{y}{y+2\sqrt{xz}}\le1-\frac{y}{x+y+z}\left(2\right)\)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}=1-\frac{z}{z+2\sqrt{xy}}\le1-\frac{z}{x+y+z}\left(3\right)\)

Cộng (1);(2);(3)

\(2P\le3-\frac{x+y+z}{x+y+z}=2\Rightarrow P\le1\)

Vậy \(minP=1\)Khi và chỉ khi \(x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
Nhật Vy Nguyễn
Xem chi tiết
Nhật Vy Nguyễn
20 tháng 2 2018 lúc 13:43

đáp án

Không có văn bản thay thế tự động nào.

Bình luận (0)
Phan Nghĩa
8 tháng 1 2021 lúc 20:10

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi 

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Bá Huy h
Xem chi tiết
Phan Nghĩa
13 tháng 5 2021 lúc 14:56

Đặt \(\sqrt{x};\sqrt{y};\sqrt{z}\rightarrow a,b,c\), ta có : \(a+b+c=1\)

Tìm min của \(A=\frac{ab}{\sqrt{5a^2+32ab+12b^2}}+\frac{bc}{\sqrt{5b^2+32bc+12c^2}}+\frac{ca}{\sqrt{5c^2+32ca+12a^2}}\)

đến đây thấy giống giống bài bất của HN năm nào ấy nhỉ ?

Bình luận (0)
 Khách vãng lai đã xóa
Vũ Thiên Phong
Xem chi tiết
Thắng Nguyễn
1 tháng 2 2017 lúc 9:39

B1:x^2+2016=xy+yz+xz+x^2=...

tuong tu

y^2+2016=... ; z^2+2016=....

B2:bdt am-gm

Bình luận (0)
Trần Văn Tâm
Xem chi tiết
Vũ Tri Hải
28 tháng 5 2017 lúc 23:41

ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)

do đó:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)

\(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)

tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm

Bình luận (0)
Tran Ngoc Lam Phuong
15 tháng 5 2020 lúc 17:53

hi minh ket ban nhe

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 5 2020 lúc 18:04

m.imgur.com/a/ls9dmpn

Cậu chịu khó đánh máy nhé ! Tớ dùng đt nên nhác phải đánh text lắm :(((

Cách mình ngắn hơn trên khá nhìu nha !!!!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Hoàng Anh Thư
Xem chi tiết
Riio Riyuko
14 tháng 5 2018 lúc 22:08

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

Bình luận (0)