Tam giác ABC cân tại B. Gọi BE là tia phân giác góc ngoài tại B. CMR BE song song với AC
Cho tam giác ABC cân tại B, gọi BE là đường phân giác của góc ngoài tại B.
CMR : BE song song AC
Ta có: B1 + B2 + B3 = 180' (giả thiết)
Mà B2 = B1 => B3 + 2B2 = 180'(1)
Tam giác ABC có: A + B3 + C = 180'
Mà A = C => B3 + 2C = 180'(2)
Từ (1) và (2) => 2B2 = 2C
=> B2 = C => BE song song AC (vì có một cặp góc ở vị trí so le trong bằng nhau)
Cho tam giác ABC vuông góc tại A và AB bé hơn AC. Trên tia đối của tia AB lấy điểm E sao cho AE=AB
a So sánh góc B và góc C của tam giác ABC, tính BC khi AB=6cm
b C/m tam giác BCE cân và CA là tia phân giác của góc BCE
c Gọi K là trung điểm của CE, BK cắt AC tại G; Từ K kẻ đường song song với BE, cắt AC tại I và cắt BC tại M. Cmr M là trung điểm của BC
d Tam giác ABC cần thêm điều kiện gì để GA=GM=GK
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC ). a, CMR: tam giác BEI là tam giác cân b, CMR: OE = OF c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K. Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF
cho tam giác abc phân giác ab phân giác ad Phân giác của góc bac cắt bc tại d qua b kẻ đương thẳng song song với ad cắt ac tại e
1) cmr góc eba = aeb
2) qua a kẻ đường thẳng vuông góc với ad cắt be tại f cmr af là tia phân giác của baf và af vuông góc với be
Tam giác ABC cân tại A,AB=AC. Tia phân giác góc B và C cắt AC và Ab lần lượt tại D và E. Chứng Minh:
a, Tam giác AED cân đỉnh A.
b,DE song song BC
c,BE=ED=DC
\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)
\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\) \(\dfrac{\text{ACB}}{\text{2}}\)
Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)
\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)
Nên \(\text{ABD = CBD = ACE = BCE}\)
Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có
\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)
\(\text{BC}\) chung
\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)
\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)
\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)
Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)
\(\text{⇒}\) \(\text{AE = AD}\)
\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)
\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\) \(\text{- 2.ABC (1)}\)
\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)
Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)
Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)
Cho tam gác abc có góc a=75 độ, góc c=35 độ, m là trung điểm của bc. đường thẳng đi qua m và vuông góc với phân giác của góc a cắt ab, ac lần lượt tại e và f
a/ chứng minh rằng: be=cf
b/ đường thẳng qua e song song với bc và đường thẳng qua c song song với ba cắt nhau tại j. chứng minh cfj là tam giác cân. từ đó, so sánh bc và ef
c/ tia phân giác ngoài của góc a của tam giác abc cắt đường thẳng bc tại i. Gọi n là điểm thuộc bi sao cho bn=ab. chứng minh: ni=ac
cho tam giác ABC vuông tại A,AB=9cm; AC=12cm.Trên tia BC lấy D sao cho BD=BA.Kẻ đoạn thẳng D vuông với BC. Đoạn thẳng này cắt AC tại E, cắt AB tại K
a) tính BC?
b) cm tam giác ABE=tam giác DBE => BE là tia phân giác của góc ABC
c)AC song song DK
d)kẻ đoạn thẳng A vuông góc với BC tại H, đoạn thẳng này cắt BE tại M. CM tam giác AME cân
Cho tam giác ABC có AB < AC, tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: Tam giác BDE là tam giác cân và AD là phân giác của góc BDE.
b) Gọi M là giao điểm của BE và AD. Chứng minh M là trung điểm của BE và AD vuông góc với BE.
c) Qua E vẽ đường thẳng song song với AB và cắt đường thẳng AD tại F. Chứng minh: M là trung điểm của AF.
d) Chứng minh: BF song song với AE.
Tam giác ABC vuông cân tại A có AD là trung tuyến. Trên đoạn thẳng DC lấy điểm H. Hạ BE và CF vuông góc với đường thẳng AH (E, F thuộc đường thẳng AH).
a. CMR: BE = AF.
b. Gọi G là giao điểm của AD và BE. CMR: GH song song với AC.
c. CMR: tam giác DEF vuông cân tại D.
d. CMR: HE > HD.
a) Xét tam giác ABE và tam giác CAF có:
\(\widehat{AEB}=\widehat{CFA}\left(=90^o\right)\)
AB = CA
\(\widehat{BAE}=\widehat{ACF}\) (Cùng phụ với góc \(\widehat{FAC}\) )
\(\Rightarrow\Delta ABE=\Delta CAF\) (Cạnh huyền - góc nhọn)
\(\Rightarrow BE=AF\)
b) Do tam giác ABC vuông cân nên trung tuyến AD đồng thời là đường cao.
Xét tam giác BAH có BE và AD là các đường cao nên G là trực tâm
Vậy thì \(HG\perp AB\)
Lại có \(AC\perp AB\) nên GH // AC.
c) Do \(\Delta ABE=\Delta CAF\Rightarrow\widehat{ABE}=\widehat{CAF}\Rightarrow\widehat{DBE}=\widehat{DAF}\)
(Cùng bằng hiệu của 45o trừ đi hai góc trên)
Tam giác ABC vuông cân nê DB = DA = DC
Vậy thì \(\Delta BDE=\Delta ADF\left(c-g-c\right)\)
\(\Rightarrow DE=DF;\widehat{BDE}=\widehat{ADF}\)
\(\Rightarrow\widehat{GDE}=\widehat{HDF}\Rightarrow\widehat{GDH}=\widehat{EDF}\Rightarrow\widehat{EDF}=90^o\)
Suy ra tam giác DEF vuông cân tại D.
d) Ta thấy ngay \(\Delta GDE=\Delta HDF\left(g-c-g\right)\)
\(\Rightarrow GD=HD\)
Kẻ GM // EH (M thuộc DH)
Ta có ngay GM < EH
Lại có GD < GM (Quan hệ đường vuông góc đường xiên)
nên DH < HE