Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Lê Quang Phúc
21 tháng 8 2019 lúc 9:44

B A C E 1 2 3

Ta có: B1 + B2 + B3  = 180' (giả thiết)

Mà B2 = B1 => B3 + 2B2 = 180'(1)

Tam giác ABC có: A + B3 + C = 180'

Mà A = C => B3 + 2C = 180'(2)

Từ (1) và (2) => 2B2 = 2C

=> B2 = C => BE song song AC (vì có một cặp góc ở vị trí so le trong bằng nhau)

Arsenal
Xem chi tiết
An Hà Vi
Xem chi tiết
Kim hồng Khoa thị
Xem chi tiết
Ben 10
11 tháng 8 2017 lúc 16:53

câu tả lời

Cho tam giác ABC,tia phân giác AD,qua D kẻ đường thẳng song song với AC cắt AB ở E,qua D kẻ đường thẳng song song với AB cắt AC ở F,Chứng minh EF là tia phân giác của góc AED,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Hoàng Hà Quyết Thắng
18 tháng 9 2019 lúc 15:40

gjhjnm

Con Gà Gánk Team
Xem chi tiết
Alice
4 tháng 8 2023 lúc 9:43

\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)

\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\)  \(\dfrac{\text{ACB}}{\text{2}}\)

Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)

\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)

Nên \(\text{ABD = CBD = ACE = BCE}\)

Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có 

\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)

\(\text{BC}\) chung

\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)

\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)

\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)

Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)

\(\text{⇒}\) \(\text{AE = AD}\)

\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)

\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\)  \(\text{- 2.ABC (1)}\)

\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)

Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)

Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)

Nguyễn Mai Trang
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
trúc nguyễn
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Cô Hoàng Huyền
28 tháng 2 2018 lúc 17:16

a) Xét tam giác ABE và tam giác CAF có:

\(\widehat{AEB}=\widehat{CFA}\left(=90^o\right)\)

AB = CA

\(\widehat{BAE}=\widehat{ACF}\)  (Cùng phụ với góc \(\widehat{FAC}\)  )

\(\Rightarrow\Delta ABE=\Delta CAF\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow BE=AF\)

b) Do tam giác ABC vuông cân nên trung tuyến AD đồng thời là đường cao.

Xét tam giác BAH có BE và AD là các đường cao nên G là trực tâm

Vậy thì \(HG\perp AB\)

Lại có \(AC\perp AB\)  nên GH // AC.

c) Do \(\Delta ABE=\Delta CAF\Rightarrow\widehat{ABE}=\widehat{CAF}\Rightarrow\widehat{DBE}=\widehat{DAF}\)

(Cùng bằng hiệu của 45o trừ đi hai góc trên)

Tam giác ABC vuông cân nê DB = DA = DC

Vậy thì \(\Delta BDE=\Delta ADF\left(c-g-c\right)\)

\(\Rightarrow DE=DF;\widehat{BDE}=\widehat{ADF}\)

\(\Rightarrow\widehat{GDE}=\widehat{HDF}\Rightarrow\widehat{GDH}=\widehat{EDF}\Rightarrow\widehat{EDF}=90^o\)

Suy ra tam giác DEF vuông cân tại D.

d) Ta thấy ngay \(\Delta GDE=\Delta HDF\left(g-c-g\right)\)

\(\Rightarrow GD=HD\) 

Kẻ GM // EH (M thuộc DH)

Ta có ngay GM < EH

Lại có GD < GM (Quan hệ đường vuông góc đường xiên)

nên DH < HE

Lê Vũ Anh Thư
2 tháng 3 2018 lúc 12:56

Thanks Hoàng Thị Thu Huyền nhìu nha!!!