Ta thấy vì BE là tia phân giác ngoài đỉnh B nên góc ABE=gEBH=>gABE=1/2gABH(1)
Xét góc ngoài ABH của tgABC lên đỉnh B ta lại có gABH=gBAC+ACB
Mà theo đề bài tg ABC cân tại B nên BAC=ACB
=>gBAC=1/2gABH(2)
Từ (1) và (2)=>gABE=gBAC
Mà 2 góc này có vị trí so le trong
Nên=> BE//AC
đpcm.
Gọi \(\widehat{DBA}\) là góc ngoài của của \(\Delta BAC\) tại điểm B
Ta có: \(\widehat{DBA}=\widehat{BAC}+\widehat{BCA}\) ( Tính chất góc ngoài của tam giác)
Vì BE là tia phân giác của \(\widehat{DBA}\) nên:
\(\widehat{EBA}=\frac{\widehat{DBA}}{2}=\frac{\widehat{BAC}+\widehat{BCA}}{2}\)
Mà : \(\widehat{BAC}=\widehat{BCA}\) (vì \(\Delta BAC\)cân tại B ) \(\left(1\right)\)
\(\Rightarrow\widehat{EBA}=\frac{2\cdot\widehat{BAC}}{2}=\widehat{BAC}\) \(\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\widehat{BAC}=\widehat{EBA}\)
Mà 2 góc BAC và EBA là 2 góc so le trong
Do đó: \(BE//AC\)