Những câu hỏi liên quan
lethienduc
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 21:12

\(2P=\frac{2ab+2bc+2ca}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^2}{abc}=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^3}{abc}\)

\(\Rightarrow2P+1=\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)}{abc}\right)=\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)\)

\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{18}{ab+bc+ca}\right)\)

\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{16}{ab+bc+ca}\right)\)

\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{16}{ab+bc+ca}\right)\)

\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{9}{\left(a+b+c\right)^2}+\frac{48}{\left(a+b+c\right)^2}\right)=57\)

\(\Rightarrow P\ge28\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Bùi Trần Nhật Thanh
Xem chi tiết
trần xuân quyến
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2018 lúc 21:44

a+b+c=abc à

Bình luận (0)
trần xuân quyến
28 tháng 5 2018 lúc 17:51

uk bạn ơi

Bình luận (0)
Thắng Nguyễn
28 tháng 5 2018 lúc 22:13

Từ \(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\hept{\begin{cases}x,y,z>0\\xy+yz+xz=1\end{cases}}\)

\(A=\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\)

\(=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\)

\(\ge\frac{\left(x+y+z\right)^2}{3xyz+x+y+z}\)\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}+x+y+z}\)

\(=\frac{3\left(x+y+z\right)}{xy+yz+xz+3}\)\(\ge\frac{3\sqrt{3\left(xy+yz+xz\right)}}{xy+yz+xz+3}\)

\(=\frac{3\sqrt{3}}{1+3}=\frac{3\sqrt{3}}{4}\)

Bình luận (0)
No ri do
Xem chi tiết
Akai Haruma
11 tháng 5 2019 lúc 23:00

Lời giải:
Vì $abc=1$ nên:

\((a+bc)(b+ac)(c+ab)=a(a+bc)b(b+ac)c(c+ab)=(a^2+1)(b^2+1)(c^2+1)\)

Áp dụng BĐT Bunhiacopxky:

\((a^2+1)(1+b^2)\geq (a+b)^2; (a^2+1)(1+c^2)\geq (a+c)^2; (b^2+1)(1+c^2)\geq (b+c)^2\)

Nhân theo vế và thu gọn:

\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)\geq (a+b)(b+c)(c+a)\)

Lại có: Theo BĐT AM-GM thì:

\((a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc\)

\(\geq (ab+bc+ac)(a+b+c)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8(a+b+c)(ab+bc+ac)}{9}(*)\) (đây là BĐT khá quen thuộc rồi)

Do đó:

\(P=\frac{(a+bc)(b+ca)(c+ab)}{ab+bc+ac}+\frac{1}{a+b+c}=\frac{(a^2+1)(b^2+1)(c^2+1)}{ab+bc+ac}+\frac{1}{a+b+c}\geq \frac{(a+b)(b+c)(c+a)}{ab+bc+ac}+\frac{1}{a+b+c}\)

\(P\geq \frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\)

Áp dụng BĐT (*) và AM-GM:

\(\frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}\geq 7.\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(ab+bc+ac)}=\frac{7}{9}(a+b+c)\geq \frac{7}{9}.3\sqrt[3]{abc}=\frac{7}{3}\)

\(\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\geq 2\sqrt{\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)(a+b+c)}}\geq 2\sqrt{\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(a+b+c)(ab+bc+ac)}}=\frac{2}{3}\)

\(\Rightarrow P\geq \frac{7}{3}+\frac{2}{3}=3\)

Vậy $P_{\min}=3$

Bình luận (0)
nguyễn ngọc dinh
12 tháng 5 2019 lúc 6:37

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1+1-1\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\ge a^2+b^2+c^2+2ab+2bc+2ac-1=\left(a+b+c\right)^2-1\)\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\)

Dấu " = " xảy ra <=> ...

Ta có: \(\frac{1}{3}.\left(a+b+c\right)^2\ge ab+bc+ca\)( BĐT quen thuộc tự c/m)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{\frac{1}{3}\left(a+b+c\right)^2}-\frac{1}{\frac{1}{3}\left(a+b+c\right)}+\frac{1}{a+b+c}\)\(=3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\)

Ta có: \(abc=1\Leftrightarrow\sqrt[3]{abc}=1\le\frac{a+b+c}{3}\left(AM-GM\right)\)

\(\Rightarrow a+b+c\ge3\)

Dấu " = " xảy ra <=> ...

\(\Rightarrow P\ge3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\ge3\)

Dấu " = " xảy ra <=> a=b=c=1

KL:...........

Bình luận (0)
Ayakashi
Xem chi tiết
Thắng Nguyễn
9 tháng 8 2017 lúc 12:49

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)

\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)

Lại có:\(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\).Từ (1);(2) có:

\(P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)

Bình luận (0)
Nguyễn Thiều Công Thành
17 tháng 8 2017 lúc 22:23

đề thi hsg toán lớp 9 tỉnh thanh hóa năm 2016-2017 mà

Bình luận (0)
Angela jolie
Xem chi tiết
Hoàng Thị Ánh Phương
10 tháng 3 2020 lúc 8:49

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa
Anh Mai
Xem chi tiết
nguyen thanh hangg
22 tháng 3 2016 lúc 8:25

B=1^8trên1^2

Bình luận (0)
Nguyễn Hương Giang
22 tháng 3 2016 lúc 8:26

\(\frac{1}{12}\)

Bình luận (0)
Anh Mai
22 tháng 3 2016 lúc 8:29

có thể giải chi tiết ko

Bình luận (0)
Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
13 tháng 3 2017 lúc 20:20

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)

\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)

Lại có: \(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)\(\Rightarrow P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)

Bình luận (0)