Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 3 2019 lúc 3:27

Do x+ y= 1 nên

S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y ,   d o   x + y = 1 = 16 x 2 y 2 - 2 x y + 12

Đặt t= xy . Do x≥ 0 ; y≥0  nên

  0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4

Xét hàm số f(t) = 16t2- 2t + 12  trên [0 ; 1/4].

Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16  .

Bảng biến thiên

Từ bảng biến thiên ta có:

m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ;         m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2

 

Vậy giá trị lớn nhất của S là 25/2 đạt được khi 

x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2

giá trị nhỏ nhất của S  là 191/ 16 đạt được khi

Chọn A.

Nguyễn Thị Minh Thảo
Xem chi tiết
LÊ ĐOÀN KHÁNH LINH
Xem chi tiết
Võ Đăng Khoa
Xem chi tiết
Nguyễn Bình Nguyên
18 tháng 4 2016 lúc 15:54

Đặt \(x+y=t,t\in\left[-2;2\right]\)

Biến đổi được \(P=-2t^3+6t\)

Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)

Lập bảng biến thiên

Ta có \(P_{Max}=4\) khi t=1

          \(P_{Min}=-4\) khi t= -1

 

 

Kiệt Võ
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 20:04

\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)

\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)

Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\) 

\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)

\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)

\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)

nhung mai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2018 lúc 18:21

Ben 10
Xem chi tiết
Phan Nghĩa
2 tháng 9 2020 lúc 15:32

Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)

Hay \(x+y\le\sqrt{8}\)

Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)

Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)

Khách vãng lai đã xóa
Hoàng Minh
Xem chi tiết
Phước Nguyễn
23 tháng 7 2016 lúc 12:57

Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố. 

Dễ dàng chứng minh được bđt sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)

Thật vậy, áp dụng bđt  \(B.C.S\) cho bộ số bao gồm  \(\left(1;1\right)\)  và  \(\left(x^2;y^2\right)\)  ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\) 

\(\Rightarrow\)  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Hay nói cách khác,  \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)

Dấu  \("="\)  xảy ra khi  \(x=y\)

Vậy, bđt đã cho được chứng minh!

Theo như cách đề bài đã chọn, để biểu thức  \(A\)  có giá trị lớn nhất thì  \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm  \(P_{min}\)(với  \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))

Ta có:  \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Lại có:  \(4=x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(2\ge xy\)  (theo bđt Cauchy cho hai số  \(x^2,y^2\)  không âm)

nên  \(P\ge\frac{1}{x}+\frac{1}{y}+1\)

Mặt khác, tiếp tục áp dụng bđt  \(Cauchy-Schwarz\)  dạng  \(Engel\)  cho bộ số gồm  \(\left(\frac{1}{x};\frac{1}{y}\right)\)  đối với  \(P,\)ta có:

\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt  \(\left(i\right)\)  )

Do đó,  \(P_{min}=\sqrt{2}+1\)  tức là  \(\frac{1}{A}\)  đạt giá trị nhỏ nhất là  \(\sqrt{2}+1\)

Vậy, dễ dàng suy ra được  \(A_{max}=\frac{1}{\sqrt{2}+1}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)