CHO BIỂU THỨC
B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
{với x khác 9 ;x lớn hơn hoặc bằng 0}
Cho biểu thức P=\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
với x>=0 ; x khác 9; x khác 4
Rút gọn biểu thức P
giúp mình với
Bài làm:
Ta có:
\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)
\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)
Cho biểu thức: \(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a)Rút gọn biểu thức
b)Tính P với \(x=\frac{\sqrt{4+2\sqrt{3}}\left(\sqrt{x}-1\right)}{\sqrt{6+2\sqrt{5}-\sqrt{5}}}\)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
Cho biểu thức C=\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) với x>0 và x≠9
a)Rút gọn C
b)Tìm x để C<-1
a, C = \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left[\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]:\left[\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right]\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(3+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Cho biểu thức A = \(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) với x ≠ 9, x ≥ 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để B > A
a) \(A=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(A=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(A=\frac{\sqrt{3}+1}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}\)
\(A=1\)
b) Ta có:
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) ( x >= 0, x khác 9 )
\(B=\frac{3+\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{\left(3+\sqrt{x}\right)+3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4\left(3+\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4}{3-\sqrt{x}}\)
Để B > A
\(\Rightarrow\frac{4}{3-\sqrt{x}}>1\)
\(\Rightarrow4>3-\sqrt{x}\)
\(\Rightarrow4-3+\sqrt{x}>0\)
\(\Rightarrow1+\sqrt{x}>0\)
\(\Rightarrow\sqrt{x}>-1\)
\(\Rightarrow x>1\)
a) A=\(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}+\frac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\left(\sqrt{5}+3\right)-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}+0=1\)
b) B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(=\frac{3+\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{9-x}\)
\(=\frac{3+\sqrt{x}+3\sqrt{x}-x}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\text{}\sqrt{x}+12}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(=\frac{4}{3-\sqrt{x}}\)
\(B>A \Leftrightarrow\frac{4}{3-\sqrt{x}}>1\)
các giá trị của x là \(\left\{x\in R\backslash0\le x\le9\right\}\)
RÚT GỌN BT:
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}\right):\left(\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\) với x lớn hơn 0; x khác 9;x khác 25
`Answer:`
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}\right):\left(\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\left(ĐK:x>0;x\ne9;x\ne25\right)\)
\(=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{2}{\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=-\frac{3\sqrt{x}-x+2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)
\(=-\frac{\sqrt{x}\left(3+\sqrt{x}\right)}{3+\sqrt{x}}.\frac{\sqrt{x}}{5-\sqrt{x}}\)
\(=-\sqrt{x}.\frac{\sqrt{x}}{5-\sqrt{x}}\)
\(=\frac{x}{\sqrt{x}-5}\)
cho biểu thức A= \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
( Với x lớn hơn hoặc bằng 0; x khác 2 và 9)
a) Rút gọn biểu thức A
b) Với giá trị nào của x thì A có giá trị = 1/2
c) tính giá trị cuả A tại x= \(19-8\sqrt{3}\)
d) tính số nguyên X để biểu thức A có giá trị là số nguyên ?
Cho biểu thức: B = \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x-9}{x-9}\right):\left(\frac{\sqrt{x}-2}{3}+1\right)\)với \(x\ge0;x\ne9\)
Rút gọn B
Cho biểu thức: Q=(1-\(\frac{x-3\sqrt{x}}{x-9}\)) : (\(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\))
Giải chi tiết giúp mình vớii
Bạn tự tìm điều kiện xác định nhé :)
\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)