a, C = \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left[\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]:\left[\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right]\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(3+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)