Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Nhiên

a) Rút gọn biểu thức sau A=\(\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

b)Chứng minh rằng:\(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right).\frac{\sqrt{x}+3}{x+9}=\frac{1}{\sqrt{x}-3}\)với x≥0 và x ≠ 9

Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 21:08

a) Ta có: \(A=\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{1+2\cdot1\cdot\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{\left(1+\sqrt{2}\right)^2}-\frac{1}{1+\sqrt{2}}\)

\(=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{1+2\sqrt{2}+2-1}{1+\sqrt{2}}\)

\(=\frac{2\sqrt{2}+2}{1+\sqrt{2}}\)

\(=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\)

b) Ta có: \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right)\cdot\frac{\sqrt{x}+3}{x+9}\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{1}{\sqrt{x}-3}\)(đpcm)


Các câu hỏi tương tự
Minh Thảo
Xem chi tiết
Hiệu diệu phương
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
An Nhiên
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Đại Số Và Giải Tích
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Ánh Right
Xem chi tiết