Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Minh
Xem chi tiết
Achana
Xem chi tiết
Akai Haruma
30 tháng 1 2020 lúc 23:09

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$

Khách vãng lai đã xóa
Vũ Trần Ngọc Châm
Xem chi tiết
ngonhuminh
14 tháng 12 2016 lúc 20:16

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

Hương Nguyễn
Xem chi tiết
Đà Giang
Xem chi tiết
alibaba nguyễn
28 tháng 9 2018 lúc 13:50

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

Quỳnh Hương
Xem chi tiết
Quỳnh Hương
9 tháng 10 2016 lúc 20:22

xin lỗi, đề bài là y^2 nhá, mình quên

Quỳnh Hương
Xem chi tiết
Lương Ngọc Anh
14 tháng 8 2016 lúc 22:07

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

Lê Thành An
Xem chi tiết
tthnew
Xem chi tiết
Trần Minh Hoàng
10 tháng 7 2020 lúc 10:53

Mới xem trên VMF về :))

Viết lại bất đẳng thức như sau:

\((x^2+1)(y^2+1)(z^2+1) \geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}\,\,\,(1)\)

Ta có:

\(\text{VT} = x^2 y^2 z^2 + \frac{1}{2} \sum (x^2+y^2 z^2 +z^2 x^2) +\frac{1}{2}(x^2+y^2+z^2) +1\)

\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} \Big[(x^2+y^2+z^2) +x^2 y^2 z^2 +(x^2 y^2 z^2 +1) +1\Big]\)

\(\geqslant \frac{1}{6} \sum (x+yz+zx)^2 +\frac{1}{2} (x^2+y^2+z^2) +\frac{(xyz+1)^2}{2}=\text{VP}\)