Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Kinomoto
Xem chi tiết
Sakura Kinomoto
1 tháng 5 2017 lúc 16:59

Thêm điều kiện là a,b cùng dấu nha! mình đánh thiếu

phú tâm
Xem chi tiết
Diệu Huyền
6 tháng 2 2020 lúc 21:26

Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\)

\(=\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)^2-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)-\left(\frac{a}{b}+\frac{b}{a}-2\right)\)

\(=\left(\frac{a}{b}+\frac{b}{a}-2\right)\left(\frac{a}{b}+\frac{b}{a}-1\right)\)

\(=\frac{a^2+b^2-2ab}{ab}.\frac{a^2+b^2-ab}{ab}\)

\(=\frac{\left(a-b\right)^2\left[\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2\right]}{a^2b^2}\ge0\forall a,b\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\ge0\left(đpcm\right)\)

Khách vãng lai đã xóa
Kiêm Hùng
6 tháng 2 2020 lúc 21:33

Bất phương trình bậc nhất một ẩn

Khách vãng lai đã xóa
phú tâm
Xem chi tiết
Trần Quốc Khanh
6 tháng 3 2020 lúc 15:30

\(VT=\frac{a^2}{b^2}+\frac{b^2}{a^2}-4\left(\frac{a}{b}+\frac{b}{a}\right)+2+4+\left(\frac{a}{b}+\frac{b}{a}\right)-2\)

\(\Leftrightarrow VT=\left(2-\frac{a}{b}-\frac{b}{a}\right)^2+\left(\frac{a}{b}+\frac{b}{a}\right)-2\)

Theo Cosi có \(\frac{a}{b},\frac{b}{a}\) là hai số nghịch đảo nên \(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)-2\ge0\)

Vậy VT >= 0 với a,b khác 0

Khách vãng lai đã xóa
Trịnh Quang Hùng
Xem chi tiết
Thầy Giáo Toán
21 tháng 9 2015 lúc 20:02

Theo bất đẳng thức Cô-Si \(a^2+\frac{1}{4}\ge a,b^2+\frac{1}{4}\ge b\to\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\) 

\(\ge\left(a+b+\frac{1}{2}\right)\left(a+b+\frac{1}{2}\right)=\left(a+b+\frac{1}{2}\right)^2\)  Dấu bằng xảy ra khi và chỉ khi \(a=b=\frac{1}{2}.\)

Áp dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy,\) với \(x=a+\frac{1}{4},y=b+\frac{1}{4}\) ta được

\(\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right).\) Dấu bằng xảy ra khi và chỉ khi \(a+\frac{1}{4}=b+\frac{1}{4}\Leftrightarrow a=b.\)

Vậy vế trái lớn hơn hoặc bằng vế phải. Do đó mà các dấu bằng xảy ra, từ đây ta được \(a=b=\frac{1}{2}.\)

tth_new
Xem chi tiết
Trà Chanh ™
5 tháng 1 2020 lúc 20:09

cả 1 màn hình , ko để ý sao đc =))

Khách vãng lai đã xóa
tth_new
5 tháng 1 2020 lúc 20:10

๖²⁴ʱ๖ۣۜNαтʂυƙĭ ๖ۣۜSυbαɾυ™ ༉ Test BĐT một tí thôi. Đừng để ý.

Khách vãng lai đã xóa
Trà Chanh ™
5 tháng 1 2020 lúc 20:12

tí ăn cả đống nội quy thì vui nhể :>

Khách vãng lai đã xóa
Phan Hằng Giang
Xem chi tiết
Kiệt Nguyễn
17 tháng 7 2020 lúc 9:17

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 7 2020 lúc 11:03

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
17 tháng 7 2020 lúc 11:18

Đọc tài liệu thầy Công Lợi rồi đào lên gáy làm gì thế em :)

By AM - GM inequalities we have:

\(\left(\frac{a}{a+b}\right)^2+\frac{1}{4}\ge\frac{a}{a+b}\)

\(\left(\frac{b}{b+c}\right)^2+\frac{1}{4}\ge\frac{b}{b+c}\)

\(\left(\frac{c}{c+a}\right)^2+\frac{1}{4}\ge\frac{c}{c+a}\)

So now:

\(LHS\ge\frac{a}{a+b}+\frac{b}{b+c}+\frac{4c}{c+a}=\frac{1}{1+\frac{b}{a}}+\frac{1}{1+\frac{c}{b}}+\frac{4}{1+\frac{a}{c}}\)

Lemma:\(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}};xy\ge1\)

Then:\(LHS\ge\frac{2}{1+\sqrt{\frac{b}{a}\cdot\frac{c}{b}}}+\frac{4}{1+\frac{a}{c}}=\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\)

We need prove that:

\(\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\ge3\)

Biến đổi tương đương là ra

Khách vãng lai đã xóa
đề bài khó wá
Xem chi tiết
đề bài khó wá
20 tháng 2 2020 lúc 11:53

cho a^2+b^2+c^2 <= 3b nhé

Khách vãng lai đã xóa
Vo Trong Duy
Xem chi tiết
Minh Anh
Xem chi tiết
Minh Anh
31 tháng 10 2016 lúc 11:26

Thật ra bài này là một câu trắc nghiệm thôi và mình muốn có lời giải rõ ràng. Có 4 đáp án các bạn chọn và giải rõ ràng ra nhé.

Hệ số k tốt nhất là:

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C.  \(\frac{1}{4}\)

D. \(\frac{1}{5}\)

Uchiha Itachi
1 tháng 11 2016 lúc 18:19

K biết

...........

...

tth_new
12 tháng 8 2020 lúc 7:24

\(k_{max}=\frac{1}{4}\). Cách làm là dùng Maple. Maple 17 mất gần 1 phút để giải bài này bằng chương trình do mình tổng hợp.

Vô thống kê hỏi đáp xem ảnh nha.

Khách vãng lai đã xóa