Cho △ABC. Gọi M,N lần lượt là trung điểm của các cạnh AB,AC. Biết CM = BN. Chứng minh △ABC cân
Cho tam giác ABC, gọi M, N lần lượt là trung điểm của các cạnh AB, AC. biết CM = BN. chứng minh tam giác ABC cân
Plz help
Cho tam giác abc kẻ BH vuông góc với AC( H thuộc AC) ; CK vuông góc AB( K thuộc AB) . biết bh = ck . Chứng minh tam giác ABC cân
Cho tam giác ABC, gọi M, N lần lượt là trung điểm của các cạnh AB, AC. biết CM = BN. chứng minh tam giác ABC cân
cho tam giác abc , gọi m, n lần lượt là trung điểm của cạnh ab ,ac . biết cm = bn chưng minh tam giác abc cân
Cho tam giác abc kẻ BH vuông góc với AC( H thuộc AC) ; CK vuông góc AB( K thuộc AB) . biết bh = ck . Chứng minh tam giác ABC cân
cho tam giác ABC, gọi M, N lần lượt là trung điểm của các cạnh AB, AC. biết CM = BN. chứng minh tam giác ABC cân
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Biết CM = BN. Chứng minh tam giác ABC cân.
Vẽ hình và giải bài chi tiết, dầy đủ.
HELP ME !!!
cho tam giác ABC cân tại A. trên hai cạnh AB, AC lấy các điểm M, N sao cho AM=AN
a) chứng minh rằng BN=CM
b) tứ giác BCNM là hình gì? tại sao?
c) gọi I, K lần lượt là trung điểm của BN, CM. tính IK biết MN=6cm; BC=10cm
a) ta co AB=AC ( tam giac ABC can tai A)
AN= AM ( gt)
---> AB-AN=AC-AM
---> BN=CM
b) cm tam giac ANM can tai A ( AN=AM)--> goc ANM = (180-A):2
ma goc ABC =(180-A):2 ( tam giac ABC can tai A)
nen goc ANM= goc ABC ma 2 gocnam o vi tri dong vi nen NM// BC==> tu giac BNMC la hinh thang--> hinh thang co hai goc B= goc C--> hinh thangcan
c> cm IK là đường trung bình hình thang NMCB==> IK= (NM+BC):2 = (6+10):2=9 cm
Cho\(\Delta ABC\)vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho BM=CN gọi O là giao điểm của BN và CM. Tại A và M vẽ các đường thẳng vuông góc với BN cắt BC lần lượt tại D và E. Chứng minh rằng: D là trung điểm của CE
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 7:
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
DB=EC
\(\widehat{HDB}=\widehat{KEC}\)
Do đó: ΔHDB=ΔKEC
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{IBC}\)
và \(\widehat{KCE}=\widehat{ICB}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
c: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BIA}=\widehat{CIA}\)
hay IA là tia phân giác của góc BIC