chứng minh :
n^3 + 2018n chia hết cho 3
chứng minh rằng với mọi số nguyên n thì \(n^3+3n^2+2018n\) chia hết cho 6
Ta có: n3 + 3n2 + 2018n = (n3 + 3n2 + 2n) + 2016n
Xét (n3 + 3n2 + 2n) (1); 2016n (2)
Xét (n3 + 3n2 + 2n) (1), có:
n3 + 3n2 + 2n
<=> (n3 + n2) + (2n2 + 2n)
<=> n2(n + 1) + 2n(n + 1)
<=> (n + 1)(n2 + 2n) <=> n(n + 1)(n + 2)
Vì n là số nguyên, nên: n(n + 1)(n + 2) là tích của 3 số nguyên liên tiếp.
=> Vậy sẽ tồn tại số chia hết cho 2 (vì n(n + 1) là tích 2 số nguyên liên tiếp)
=> Vậy sẽ tồn tại số chia hết cho 3 (vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp)
=> (n3 + 3n2 + 2n) chia hết cho cho 6 (vì 6 = 2.3 và ƯC{2;3}∈{1}).(3)
Xét 2016n (2) có: 2016 ⋮ 6 và n là số nguyên, nên 2016n ⋮ 6. (4)
Từ (3) và (4), suy ra (n3 + 3n2 + 2n) + 2016n ⋮ 6
<=> n3 + 3n2 + 2018n ⋮ 6 (đpcm)
1. Giải phương trình \(\sqrt{x+3}+4\sqrt{x}-2x=6-\sqrt{5-x}\)
2. Chứng minh rằng với mọi số nguyên n thì \(n^3+3n^2+2018n\)chia hết cho 6
CMR với mọi số nguyên n thì \(n^3+3n^2+2018n\) chia hết cho 6
CMR với mọi số nguyên n thì \(n^3+3n^2+2018n\) chia hết cho 6
\(n^3+3n^2+2n+2016n\)
\(=n\left(n^2+3n+2\right)+2016n\)
\(=n\left(n+1\right)\left(n+2\right)+2016n\)
Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)
\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n
Chứng minh không tồn tại số nguyên n thỏa mãn :
\(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)
Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2
\(\Rightarrow\) vô lí
Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán
cho n thuốc N. chứng minh nếu 4n^3+27 chia hết cho 3 thì n không chia hết cho 3 ( chứng minh bằng phản chứng ạ )
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.
Bài toán 1:
Cho A = 3 + 3^3 + 3^5 + ... + 3^1991
Chứng minh A chia hết cho 13, chia hết cho 14
Bài toán 2:
Chứng minh rằng : (n+7) . (n+8) . (n+9) chia hết cho 2 và chia hết cho 3 (n thuộc N)