Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dam thu a

chứng minh rằng với mọi số nguyên n thì \(n^3+3n^2+2018n\) chia hết cho 6

Best Best
23 tháng 2 2020 lúc 21:50
n3+ 3n2+ 2018 n = n.(n+1)(n+2) + 2016nvì n.(n+1)(n+2) là tích của 3 số nguyên liên tiếp nên vừa chia hết cho 2 và vừa chia hết cho 3 nên n.(n+1)(n+2)chia hết cho 6 .2016n luôn chia hết cho 6 Vậy n3+ 3n2+ 2018 n luôn chia hết cho 6 với mọi n € Z P/S : Good Luck
~Best Best~

Khách vãng lai đã xóa
Fa Châu De
23 tháng 2 2020 lúc 22:04

Ta có: n3 + 3n2 + 2018n = (n3 + 3n2 + 2n) + 2016n

Xét (n3 + 3n2 + 2n) (1); 2016n (2)

Xét (n3 + 3n2 + 2n) (1), có:

n3 + 3n2 + 2n

<=> (n3 + n2) + (2n2 + 2n)

<=> n2(n + 1) + 2n(n + 1)

<=> (n + 1)(n2 + 2n) <=> n(n + 1)(n + 2)

Vì n là số nguyên, nên: n(n + 1)(n + 2) là tích của 3 số nguyên liên tiếp.

=> Vậy sẽ tồn tại số chia hết cho 2 (vì n(n + 1) là tích 2 số nguyên liên tiếp)

=> Vậy sẽ tồn tại số chia hết cho 3 (vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp)

=> (n3 + 3n2 + 2n) chia hết cho cho 6 (vì 6 = 2.3 và ƯC{2;3}∈{1}).(3)

Xét 2016n (2) có: 2016 ⋮ 6 và n là số nguyên, nên 2016n ⋮ 6. (4)

Từ (3) và (4), suy ra (n3 + 3n2 + 2n) + 2016n ⋮ 6

<=> n3 + 3n2 + 2018n ⋮ 6 (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lining
Xem chi tiết
vvvvvvvv
Xem chi tiết
therese hương
Xem chi tiết
Đặng Ngọc Hà
Xem chi tiết
Đại Nguyễn
Xem chi tiết
Huong Nguyenthi
Xem chi tiết
Hjhjhjhjhjhjhjhj
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết