~Best Best~
Ta có: n3 + 3n2 + 2018n = (n3 + 3n2 + 2n) + 2016n
Xét (n3 + 3n2 + 2n) (1); 2016n (2)
Xét (n3 + 3n2 + 2n) (1), có:
n3 + 3n2 + 2n
<=> (n3 + n2) + (2n2 + 2n)
<=> n2(n + 1) + 2n(n + 1)
<=> (n + 1)(n2 + 2n) <=> n(n + 1)(n + 2)
Vì n là số nguyên, nên: n(n + 1)(n + 2) là tích của 3 số nguyên liên tiếp.
=> Vậy sẽ tồn tại số chia hết cho 2 (vì n(n + 1) là tích 2 số nguyên liên tiếp)
=> Vậy sẽ tồn tại số chia hết cho 3 (vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp)
=> (n3 + 3n2 + 2n) chia hết cho cho 6 (vì 6 = 2.3 và ƯC{2;3}∈{1}).(3)
Xét 2016n (2) có: 2016 ⋮ 6 và n là số nguyên, nên 2016n ⋮ 6. (4)
Từ (3) và (4), suy ra (n3 + 3n2 + 2n) + 2016n ⋮ 6
<=> n3 + 3n2 + 2018n ⋮ 6 (đpcm)