Tìm x,y,z biết : \(2x=\frac{y}{3}=\frac{z}{5}\)và \(x+y-\frac{z}{2}+20=0\)
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x-3y+z=6
\(b.\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
\(c.\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+3y-z=50
\(d.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Tìm x , y , z , biết
a) \(\frac{x}{2}=\frac{y}{3}\), \(\frac{y}{4}=\frac{z}{5}\)và x + y - z = 10
b) \(\frac{x}{y}=\frac{7}{20}\), \(\frac{y}{z}=\frac{5}{8}\)và 2x + 5y - 2z = 100
c) 5x = 8y = 20z và x - y - z = 3
Giúp mk với
mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di
Tìm x, y, z biết)
a)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=41
b) 4x = 3y ; 5y = 6z và x2 + y2 + z2 = 500
c) \(\frac{x+1}{3}=\frac{y+12}{4}=\frac{z+3}{5}\)và 3x + 2y - z = 20 ; x2 + y2 + z2 = 1420
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)và x+2y+z =10
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\)và x+y=18
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và 5x-z=20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x+y-z=9
2x=3y=5z và x-2y+3z=65
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
Tìm x, y, z biết:
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
b) \(\frac{x}{2}=\frac{y}{3};y:5=z:4\) và x - y + z = -49
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x + 2y -3z = -20
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Tìm x,y,z biết :
a)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-10
b)5x=8y=20z và x-y-z =3
c)\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và xyz=20
d)\(\frac{2x}{3}=\frac{3y}{4}\frac{4z}{5}\) và x+y+x=-19
Tìm x,y,z Biết:
a, \(\frac{x}{y}=\frac{z}{3}\)và 2x-3y=1
b, \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{4}\) và 2x+y-z=16
mik ko bít
I don't now
................................
.............
b, ta có : x/3 = y/5 -> x/6 = y/10 ; y/2 = z/4 -> y/10 = z/20 . suy ra : x/6 = y/10 = z/20
áp dụng dãy tỉ số bằng nhau ta có : x/6 = y/10 = z/20 = 2x + y - z / 12 + 10 - 20 = 16 / 2 = 8
suy ra : x/6 = 8 -> x = 48
y = 80
z = 160
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)