Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranhuyenvy
Bài 1 : cho tam giác ABC vuông tại A điểm D thuộc cạnh huyền BC. Kẻ DH vuông với AC H thuộc AC trên tia đối của tia HD lấy điểm K sao cho HKHD kẻ DM vuông với AB M thuộc AB trên tia đối của tia MA lấy điểm N sao choMNMD chứng minh A là trung điểm của NK.                                                               Bài 2 : cho tam giác ABC có ba góc đều nhọn kẻ AH vuông góc BC tạ H kẻ DH vuông góc với AB D thuộc AB trên tia đối của tia DH lấy điểm M sao cho DMDH kẻ HE vuông góc với AC trên tia đ...
Đọc tiếp

Những câu hỏi liên quan
Đỗ Thụy Cát Tường
Xem chi tiết
Khánh Ly Phan
Xem chi tiết
Phi Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 20:56

Xét ΔAND có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAND cân tại A

=>AB là phân giác của góc NAD(1)

Xét ΔADK có

AC vừa là đường cao, vừa là trung tuyến

=>ΔADK cân tại A

=>AC là phân giác của góc DAK(2)

Từ (1), (2) suy ra góc NAK=2*90=180 độ

=>N,A,K thẳng hàng

mà AN=AK

nên A là trung điểm của NK

tranhuyenvy
Xem chi tiết
 ác mộng của nhân loại
23 tháng 1 2020 lúc 19:08

đầu bài sai rồi

Khách vãng lai đã xóa
Tamhoa
Xem chi tiết
Vũ Minh Tuấn
23 tháng 1 2020 lúc 22:15

Đề sai rồi bạn. Tamhoa

Khách vãng lai đã xóa
OwO Yummy
Xem chi tiết
runtyler
Xem chi tiết
Nhật Hạ
25 tháng 2 2020 lúc 16:57

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

Khách vãng lai đã xóa
Nguyễn Linh Chi
25 tháng 2 2020 lúc 17:54

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Kiệt Nguyễn
24 tháng 2 2020 lúc 16:27

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

Khách vãng lai đã xóa
Nguyễn Linh Chi
2 tháng 2 2020 lúc 15:17

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

Khách vãng lai đã xóa
Phạm Khánh Linh
Xem chi tiết