Tìm nghiệm nguyên dương của phương trình \(x^y=y^x+7\)
Tìm nghiệm nguyên dương (x;y) của phương trình \(x^6-2x^3y-x^4+y^2+7=0\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
Tìm nghiệm nguyên dương của phương trình:
\(\frac{x-y}{x^2-xy+y^2}=\frac{3}{7}\)
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
Tìm nghiệm nguyên dương của phương trình x+y+x=xyz
HELP ME
Do vai trò x, y, z trong phươg trình bình đẳng
Ta xét x≤y≤z
Vì x,y,z nguyên dương=>xyz≠0 mà x≤y≤z=>x+y+z≤3z
=>xy≤3
=>xy∈\(\left\{1,2,3\right\}\)
Xét x=1=>y=1
=>2+z=z(vô lí)
Xét xy=2, x≤y=>z=1;y=2
=>z=3
Xét xy=3, vì x≤y=>x=1;y=3=>z=2
Vậy nghiệm nguyên duoqng của phương trình trênlà hoán vị của (1,2,3)
Tìm nghiệm nguyên dương của phương trình \(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\).
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
(x,y) hoán vị của (4,9) . có vẻ hoạt động
Tìm nghiệm nguyên dương của phương trình: \(7^x+12^y=13^z\)
tìm nghiệm nguyên dương của phương trình x^3 - y^ = 95(x^2 + y^2)
Tìm nghiệm nguyên dương của phương trình : 2xyz=x+y+z
Lời giải:
$2xyz=x+y+z$
$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$
Không mất tổng quát giả sử $x\geq y\geq z$
$\Rightarrow xy\geq xz\geq yz$
$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$
$\Rightarrow 2\leq \frac{3}{yz}$$
$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$
$\Rightarrow y=z=1$. Thay vào pt ban đầu:
$2x=x+2$
$x=2$
Vậy $(x,y,z)=(2,1,1)$ và hoán vị.
tìm nghiệm nguyên dương của phương trình : x+y+z=xyz
tìm n nguyên dương để phương trình sau có nghiệm x,y,z nguyên dương:(x+y+z)^2=nxyz