Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jack Viet
Xem chi tiết
ღŇεʋεɾ_ɮε_Ąℓøŋεღ
10 tháng 2 2021 lúc 19:17

Tên vietjack mà không làm được thì mang tiếng người ta quá

Ngô Thành Chung
10 tháng 2 2021 lúc 20:28

a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)

Hệ không thể có nghiệm duy nhất 

Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)

⇔ 3m - 2 > 1 - m

⇔ m > \(\dfrac{4}{3}\)

Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)

Jack Viet
Xem chi tiết
Ninh Thanh Hoan
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 2021 lúc 22:14

- Với \(m=2\) BPT luôn có nghiệm

- Với \(m\ne2\) BPT vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1\le0\end{matrix}\right.\)

\(\Rightarrow m\le3-\sqrt{10}\)

Nguyễn Anh Dũng An
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 0:26

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2

Jack Viet
Xem chi tiết
abc
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 11:44

Lời giải:

BPT đã cho vô nghiệm khi $(m+2)x^2-(3m+1)x+m+1>0$ với mọi $x\in\mathbb{R}$

Điều này xảy ra khi \(\left\{\begin{matrix} m+2>0\\ \Delta=(3m+1)^2-4(m+2)(m+1)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-2\\ 5m^2-6m-7< 0\end{matrix}\right.\)

\(\Leftrightarrow \frac{3-2\sqrt{11}}{5}< x< \frac{3+2\sqrt{11}}{5}\)

 

 

 

Đạt Kien
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 0:36

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 18:30

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

Jack Viet
Xem chi tiết