Tìm a để bất phương trình \(\left(a^2-1\right)x+2a-3< 0\) vô nghiệm
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm, có nghiệm duy nhất .
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
MỌI NGƯỜI ƠI GIÚP EM VỚI GẤP LẮM RỒI
Tên vietjack mà không làm được thì mang tiếng người ta quá
a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ không thể có nghiệm duy nhất
Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)
⇔ 3m - 2 > 1 - m
⇔ m > \(\dfrac{4}{3}\)
Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)
Tìm tham số m để hệ bất phương trình sau : 1)có nghiệm 2)vô nghiệm
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
Tìm m để bất phương trình: \(\left(m-2\right)x^2+2\left(m+1\right)x+2m>0\) vô nghiệm
- Với \(m=2\) BPT luôn có nghiệm
- Với \(m\ne2\) BPT vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1\le0\end{matrix}\right.\)
\(\Rightarrow m\le3-\sqrt{10}\)
Cho bất phương trình \(\left(a-4\right)x-1+2a\le0\)
Tìm a để pt vô nghiệm trên (0;8)
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
Định m để bất phương trình: \(^{\left(m+2\right)x^2-\left(3m+1\right)x+m+1}\) ≤ 0 vô nghiệm
Lời giải:
BPT đã cho vô nghiệm khi $(m+2)x^2-(3m+1)x+m+1>0$ với mọi $x\in\mathbb{R}$
Điều này xảy ra khi \(\left\{\begin{matrix} m+2>0\\ \Delta=(3m+1)^2-4(m+2)(m+1)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-2\\ 5m^2-6m-7< 0\end{matrix}\right.\)
\(\Leftrightarrow \frac{3-2\sqrt{11}}{5}< x< \frac{3+2\sqrt{11}}{5}\)
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Tìm m để các phương trình sau (dùng công thức nghiệm thu gọn)
a.\(x^2+2\left(m-2\right)x+m^2-3=0\) có nghiệm
b.\(\left(2m-1\right)x-4mx+2m+3=0\) có nghiệm kép
c.\(4x^2-2\left(2m-1\right)x+m^2=0\) vô nghiệm
a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)
\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)
=>-16m>=-28
hay m<=7/4
b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)
=>4m-3=0
hay m=3/4
c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)
=>-16m+4<0
hay m>1/4
Tìm m để các hệ bất phương trình sau : có nghiệm, vô nghiệm, có nghiệm duy nhất ( Làm cả 3 cái đó trong 1 hệ chứ không phải là chỉ làm 1 cái trong 1 hệ thôi đâu ! )
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)