Giải phương trình :
\(\frac{x^2+3x+3}{x^2-4x+3}+\frac{x^2+6x+3}{x^2+5x+3}=\frac{53}{12}\)
Giải phương trình :
\(\frac{x^2+3x+3}{x^2-4x+3}+\frac{x^2+6x+3}{x^2+5x+3}=\frac{53}{12}\)
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
\(\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
\end{align} \\
\Leftrightarrow \left[ \begin{array}{l}
y = 10 \Rightarrow x + \dfrac{3}{x} = 7 \Leftrightarrow {x^2} - 7x + 4 = 0 \Leftrightarrow x = \dfrac{{7 \pm \sqrt {37} }}{2}\left( {TM} \right)\\
y = - \dfrac{{49}}{{29}} \Rightarrow x + \dfrac{3}{x} = - \dfrac{{49}}{{29}} \Leftrightarrow 29{x^2} + 49x + 87 = 0\left( {VN} \right)
\end{array} \right.{\rm{ }}
\)
Vậy phương trình có tập nghiệm là \(S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}
\)
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
$\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
& \Leftrightarrow \left[ \begin{align}
& y=10\Rightarrow x+\dfrac{3}{x}=7\Leftrightarrow {{x}^{2}}-7x+4=0\Leftrightarrow x=\dfrac{7\pm \sqrt{37}}{2}\left( TM \right) \\
& y=-\dfrac{49}{29}\Rightarrow x+\dfrac{3}{x}=-\dfrac{49}{29}\Leftrightarrow 29{{x}^{2}}+49x+87=0\left( VN \right) \\
\end{align} \right. \\
\end{align}$ Vậy phương trình có tập nghiệm là $S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}$
Khi nãy bị lỗi công thức @@
Điều kiện: $x\ne 1,x\ne 3,x\ne \frac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\frac{x+3+\frac{3}{x}}{x-4+\frac{3}{x}}+\frac{x+6+\frac{3}{x}}{x+5+\frac{3}{x}}=\frac{53}{12}$
Đặt $y=x+\frac{3}{x}+3,$ phương trình trở thành: $\frac{y}{y-7}+\frac{y+3}{y+2}=\frac{53}{12}$
$\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
\end{align}$
$ \Leftrightarrow \left[ \begin{array}{l}
y = 10 \Rightarrow x + \dfrac{3}{x} = 7 \Leftrightarrow {x^2} - 7x + 4 = 0 \Leftrightarrow x = \dfrac{{7 \pm \sqrt {37} }}{2}\left( {TM} \right)\\
y = - \dfrac{{49}}{{29}} \Rightarrow x + \dfrac{3}{x} = - \dfrac{{49}}{{29}} \Leftrightarrow 29{x^2} + 49x + 87 = 0\left( {VN} \right)
\end{array} \right.{\rm{ }}$
Vậy phương trình có tập nghiệm là $S=\left\{ \frac{7\pm \sqrt{37}}{2} \right\}$
giải phương trình sau:
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\\\)
b) \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
c)\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
d) \(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
b) Bạn kiểm tra lại đề bài
c) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8}{16x^2-1}\left(x\ne\pm\frac{1}{4}\right)\)
\(\Leftrightarrow\frac{3}{1-4x}-\frac{2}{4x+1}+\frac{8}{16x^2-1}=0\)
\(\Leftrightarrow\frac{-3}{4x+1}-\frac{2}{4x+1}+\frac{8}{\left(4x+1\right)\left(4x-1\right)}=0\)
\(\Leftrightarrow\frac{-3\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3}{\left(4x-1\right)\left(4x+1\right)}-\frac{8x-2}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3-8x+2+8}{\left(4x-1\right)\left(4x+1\right)}=0\)
=> -20x+13=0
<=> -20x=-13
<=> \(x=\frac{13}{20}\left(tmđk\right)\)
- Giải các bất phương trình và các phương trình sau:
a. 1-\(\frac{2x-1}{9}\)= 3-\(\frac{3x-3}{12}\)
b. \(\frac{5x-2}{3}-\frac{2x^2-x}{2}>\frac{x\left(1-3x\right)}{3}+\frac{15x}{4}\)
c. \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
Giải phương trình:
1. \(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}=\frac{2}{x^2-6x+8}\)
2. \(\frac{x^2+2x+2}{x+1}+\frac{x^2+8x+20}{x+4}=\frac{x^2+4x+6}{x+2}+\frac{x^2+6x+12}{x+3}\)
Giải các phương trình sau:
\(\frac{3}{4x-20}-\frac{15}{2x^2-50}+\frac{7}{6x+30}=0\)
\(\frac{8x^2}{3-12x^2}+\frac{1+8x}{4+8x}=\frac{-2x}{3-6x}\)
\(\frac{1}{x^2-2x+1}+\frac{1}{x^2+2x=1}=\frac{2}{x^2-1}\)
\(\frac{1}{x^2+1}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{4}{5}\)
Giải bất phương trình:
\(\sqrt{\frac{x^3+1}{6x^2-x+5}}-1\)\(\geq\)\(\frac{4x^3-24x^2+4x-16}{5x^3+18x^2-3x+20}\)
Giải phương trình
\(\frac{14}{20-6x-2x^2}+\frac{x^4+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe