tìm nghiệm là các số tự nhiên của phương trình \(xy-4x=35-5y\)
Tìm nghiệm tự nhiên của phương trình : xy - 4x = 25 - 5y
\(xy-4x=25-5y\Leftrightarrow xy-4x+5y-25=0\)
\(\Leftrightarrow x\left(y-4\right)+5\left(y-4\right)-5=0\)
\(\Leftrightarrow\left(x+5\right)\left(y-4\right)=5\)
Từ đó có ước và tìm nghiệm tự nhiên.
Tìm nghiệm tự nhiên của phương trình :
xy - 4x = 25 - 5y
Tìm các số tự nhiên x,y thỏa mãn:
xy + 4x = 35 + 5y
Ta có:
xy+4x=35+5y
\(\Leftrightarrow\)x(y+4)=20+15+5y
\(\Leftrightarrow\)x(y+4)=5(y+4)+15
\(\Leftrightarrow\)x(y+4)+5(y+4)=15
\(\Leftrightarrow\)(x+5)(y+4)=15
Ta có bảng:
x+5 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+4 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -20 | -10 | -8 | -6 | -4 | -2 | 0 | 10 |
y | -5 | -7 | -9 | -19 | 11 | 1 | -1 | -3 |
Vậy................
<=>xy+4x-5y=35
<=>xy+4x-5y-20=15
<=> x(y+4) -5(y+4)=15=1.15=(-1)(-15)=3.5=.....
Ta có bảng.....
k nhé :3
tìm nghiệm nguyên của phương trình xy-45=35-5y
Ta có : xy-45=35-5y
<=> xy+5y= 35+45
<=> y(x+5) = 80
*Nếu x= -5 thì ta có y( -5 +5 ) = 80
<=> 0=80( Vô nghiệm)
Suy ra : x khác -5
=> x+5 khác 0
Ta có : y(x+5) = 80
\(\Leftrightarrow\) \(y=\frac{80}{x+5}\)
Mà \(y\in Z\)nên \(\frac{80}{x+5}\in Z\).
\(\Leftrightarrow80⋮x+5\)\(\Leftrightarrow x+5\inƯ\left(80\right)\)
\(\Leftrightarrow x+5\in\hept{ }-80;-40;-20;-16;-10;-8;-5;-4;-2;-1;1;2;4;5;8;10;16;20;40;80\)
Bạn giải x ra , sau đó tìm ra y , chứ dài qua mình không ghi trên này được @@
Tìm các số tự nhiên x,y thõa mản :
a) xy+4x=35+5y
b) (2^/x/)+(y^2)+y=2x+1
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
Tìm nghiệm x,y là số tự nhiên của phương trình 2(x+y)+xy=x^2+y^2
2(x + y) + xy = x2 + y2
<=> x2 + y2 - 2x - 2y - xy = 0
<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0
<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0
<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16
<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)
Do VT = (2x - y - 2)2 \(\ge\)0 \(\forall\)x;y
=> VP = 16 - 3(y - 2)2 \(\ge\)0
=> 3(y - 2)2 \(\le\) 16
=> (y - 2)2 \(\le\)16/3
Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}
=> y - 2 \(\in\){0; 1; -1; 2; -2}
Lập bảng:
y - 2 | 0 | 1 | -1 | 2 | -2 |
y | 2 | 3 | 1 | 4 | 0 |
Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0
<=> (2x - 4)2 = 16
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Với y = 3 .... (tự thay vào tìm x)
Tìm các giá trị của m để nghiệm của hệ phương trình: 2 x + 1 3 − y + 1 4 = 4 x − 2 y + 2 5 2 x − 3 4 − y − 4 3 = − 2 x + 2 y − 2 cũng là nghiệm của phương trình 6mx – 5y = 2m – 66
A. m = −1
B. m = 1
C. m = 2
D. m = 3
Ta có 2 x + 1 3 − y + 1 4 = 4 x − 2 y + 2 5 2 x − 3 4 − y − 4 3 = − 2 x + 2 y − 2
⇔ 40 x + 20 − 15 y − 15 = 48 x − 24 y + 24 6 x − 9 − 4 y + 16 = − 24 x + 24 y − 24
⇔ 8 x − 9 y = − 19 30 x − 28 y = − 31 ⇔ 120 x − 135 = − 285 120 x − 112 = − 124 ⇔ x = 11 2 y = 7
Thay x = 11 2 ; y = 7 vào phương trình 6mx – 5y = 2m – 66 ta được:
6m. 11 2 − 5.7 = 2m – 66 31m = −31 m = −1
Đáp án: A
Tìm tất cả các cặp số tự nhiên (x,y) sao cho : 4x + 5y = 35
Tìm tất cả các cặp số tự nhiên ( x,y )sao cho : 4x + 5y = 35
dễ vãi ra thế mà ko biết làm :)))) (đồ ngu)