x : y : z = 3 : 5 : (-2) và 5x-y+3z
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
tìm x;y;z
x : y : z = 3 : 5 : (-2) và 5x - y -3z = 2
ta có \(x:y:z=3:5:\left(-2\right)\)và\(5x-y-3z=2\)
\(=>\frac{x}{3}=\frac{y}{5}=\frac{-z}{2}\)=>\(\frac{5x}{15}=\frac{y}{5}=-\frac{3z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{15}=\frac{y}{5}=-\frac{3z}{6}=\frac{5x-y+\left(-3z\right)}{15-5+6}=\frac{5x-y-3z}{16}=\frac{2}{16}=\frac{1}{8}\)
*\(\frac{x}{3}=\frac{1}{8}=>x=\frac{1}{8}.3=\frac{3}{8}\)
*\(\frac{y}{5}=\frac{1}{8}=>y=\frac{1}{8}.5=\frac{5}{8}\)
*\(-\frac{z}{2}=\frac{1}{8}=>z=\frac{1}{8}.\left(-2\right)=-\frac{1}{4}\)
vậy \(x=\frac{3}{8};y=\frac{5}{8};z=-\frac{1}{4}\)
Tìm x,y,z:
a,x:y:z=3:5:(-2) và 5x-y+3z=124
b,x/3=y/4=z/5 và 2x2+2y2-3z2= -100
c,x-1/2=y-2/3=z-3/4 và 2x+ 3y -z=50
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a, Theo đề bài ta có :\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)=\(\frac{5x}{15}\)=\(\frac{3z}{\left(-6\right)}\)=\(\frac{5x-y+3z}{15-5+\left(-6\right)}\)=\(\frac{124}{4}\)= 31 (Vì \(5x-y+3z=124\))
Suy ra : \(x=31\times3=93\)
\(y=31\times5=155\)
\(z=31\times\left(-2\right)=-62\)
Vậy .................
Tìm x, y, z biết: x : y : z = 3 : 5 : (- 2) và 5x - y +3z = 124
Theo đề, ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và 5x-y+3z= 124
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\left(=\right)\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\frac{x}{3}=31\)
\(\frac{y}{5}=31\)
\(\frac{z}{-2}=31\)
=> x = 93
y = 155
z = -62
\(\frac{x}{3}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{z}{-2}\) và \(5x-y+3z=124\)
\(\frac{x}{3}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{z}{-2}\)\(\left(=\right)\)\(\frac{5x}{15}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{3z}{-6}\)\(=\)\(\frac{5x-y-3x}{15-5-\left(-6\right)}\)\(=\)\(\frac{124}{4}\)\(=\)\(31\)
\(\frac{x}{3}\)\(=\)\(31\)
\(\frac{y}{5}\)\(=\)\(31\)
\(\frac{x}{-2}\)\(=\)\(31\)
\(x=93\)
\(y=155\)
\(x=-62\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)và 2x+y-z=81
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\)và 5x-y+3z=124
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)và x.y.z=810
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\)và\(x^2.y^2.z^2=288^2\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
d.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=6k\end{matrix}\right.\)
Thế vào \(x^2y^2z^2=288^2\)
\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2.\left(6k\right)^2=288^2\)
\(\Rightarrow\left(k^2\right)^3=64\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=6k=12\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=6k=-12\end{matrix}\right.\)
tìm x,y,z biết x : y : z = 3 : 5 : (-2 ) và 5x - y + 3z = -16
\(x:y:z=3:5;\left(-2\right)\text{ hay }\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
\(\text{áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{-16}{4}=-4\)
\(\text{Suy ra : }\frac{x}{3}=-4\Rightarrow x=-4.3=-12\)
\(\frac{y}{5}=-4\Rightarrow y=-4.5=-20\)
\(\frac{z}{-2}=-4\Rightarrow z=\left(-4\right)\left(-2\right)=8\)
theo đề bài,ta có:
x/3 = y/5 = -z/2 và 5x - y + 3z = -16
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có :
x/3 = y/5 = -z/2 = (5x - y + 3z) / (5.3 - 5 + 3.2) = -16 / 16 = -1
Suy ra:
x/3 = -1 => x = -1.3 = -3
y/5 = -1 => y = -1.5 = -5
-z/2 = -1 => -z = -1.2 = -2 => z = 2
Vậy x = -3 ; y = -5 ; z = 2
x : y : z = 3 : 5 : (-2) và 5x -y +3z =124
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow x=31.3=93\)
\(y=31.5=155\)
\(z=31.\left(-2\right)=-62\)
Tk cho mình nha^^
x : y : z =3 :5 : (-2) và 5x -y+ 3z = 124
x:y:z=3:5:(-2) và 5x-y+3z=124
<=> x/3 = y/5 = z/(-2)
= 5x/15 = y/5 = 3z/(-6)
= (5x-y+3z)/ [15-5+(-6)] (theo t/c của dãy tỷ số bằng nhau)
=124/4
= 31
Vậy:
x = 31 . 3 = 93
y = 31 . 5 = 155
z = 31 . (-2) = - 62
x : y : z = 3 : 5 : ( -2 ) và 5x - y + 3z = -16
CẦN GẤP Ạ
Áp dụng t/c dstbn:
\(x:y:z=3:5:\left(-2\right)\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{3\cdot5-5+3\left(-2\right)}=\dfrac{-16}{4}=-4\\ \Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)