Tìm a để \(F\left(x\right)=x^3+ax^2+bx+c\)chia cho x+1 dư -4, chia cho x-2 dư 5
Cho \(f\left(x\right)=x^3+ax^2+bx+c\) (a, b thuộc R). Biết f(x) chia cho x+1 dư -4, chia cho x-2 dư 5. Tính: \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
Cho \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\). Tìm a,b,c,d biết f(x) chia cho x-1; x-2; x+3 cùng dư 2 và chia cho x+2 dư -10
Theo định lý Bezout ta có:
\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)
Ta có:
\(f\left(1\right)=a+b+c+d+1=2\)
\(f\left(2\right)=8a+4b+2c+d+16=2\)
\(f\left(-3\right)=-27a+9b-3c+d+81=2\)
\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)
Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !
Cho đa thức \(F\left(x\right)=x^3+ax^2+bx+c\)Biết F(x) chia x - 2 dư 5, chia cho x+1 dư 4. Tính giá trị của biểu thức \(A=\left(a^3+b^3\right)\left(a^5+c^5\right)\left(a^7+c^7\right)\)
Cho đa thức f(x)=\(x^3+ax^2+bx+c\)( với a,b,c thuộc R). Biết f(x) chia x-2 dư 5, chia x+1 dư -4. Tính giá trị \(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(
Ta có:
\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)
\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)
Theo định lý Huy ĐZ ta có:
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)
\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\) ta được:
\(9+3a+3b=9\Leftrightarrow a+b=0\)
Khi đó:
\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )
Ap dung dinh ly Bozout ta co
\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)
<=> \(4a+2b+c=-3\) (1)
tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)
<=> \(a-b+c=-3\) (2)
tu (1) va (2) => \(4a+2b=a-b=-3\)
=> a=b+-3
=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)
=> \(a=-\frac{3}{2}\)
=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)
=> gia tri bieu thuc =0
Upin & Ipin Sai rồi man,\(3a+2b=a-b=-3?????\)
\(a-b+c=-3\) mới đúng nha,xem cách của mình đi,có lẽ đúng đấy.
Tìm a, b, c để:
\(\left(x^4+ax^3+bx+c\right)\) chia hết cho \(\left(x-3\right)^3\)
\(\left(2x^4+ax^2+bx+c\right)chia\) hết cho x - 2 và khi chia cho \(x^2-1\) dư x
Cho \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\). Tìm a,b,c,d biết f(x) chia cho x-1; x-2; x+3 cùng dư 2 và chia cho x+2 dư -10
Cho đa thức \(F\left(x\right)=x^3+ax^2+bx+c\)(Với\(a,b,c\in R\))
Biết đa thức F(x)chia cho đa thức x-2 thì dư 5, chia cho x+1 thì dư -4.
Hãy tính giá trị\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)?
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
Tìm a, b, c để:
\(\left(x^4+ax^3+bx+c\right)\) chia hết cho \(\left(x-3\right)^3\)
\(\left(2x^4+ax^2+bx+c\right)chia\) hết cho x - 2 và khi chia cho \(x^2-1\) dư x