Cho tam giác ABC có góc A=120 độ. Chứng minh rằng: \(\frac{1}{MA}=\frac{1}{AB}+\frac{1}{AC}\)với AM là đường trung tuyến
Cho tam giác ABC có góc A=120 độ. Chứng minh rằng: \(\frac{1}{MA}=\frac{1}{AB}+\frac{1}{AC}\)với AM là đường trung tuyến
Cho tam giác ABC vuông tại A, trung tuyến AM. Trên tia đối MA lấy D sao cho DM = MA
1. Chứng minh : Tam giác ABC = tam giác DCM và DC vuông góc với AC
2. Trên tia đối AB láy E sao cho EA = AB . EM cắt AC tại N . Chứng minh NC = 2NA
3. Chứng minh : \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)
( Thông cảm hình bị lệch )
a) + Xét \(\Delta ABC\)và \(\Delta DMC\)có :
AM = DM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)( vì là hai góc đối đỉnh ) => \(\Delta AMB=\Delta DMC\)
MB = MC ( AM là trung tuyến của \(\Delta ABC\))
=> \(\widehat{B}=\widehat{MCD}\)( hai góc tương ứng )
=> DC // AB ( có hai góc so le trong = )
Mà AB \(\perp\)AC ( Vì \(\Delta ABC\)vuông tại A)
=> DC _|_ AC
+ Xét \(\Delta BEC\)có :
M là trung điểm của cạnh BC ( Vì AM là trung tuyến của ABC )
=> EM là trung tuyến
A là trung điểm của BE ( Vì EA = AB ) => CA là trung tuyến
Mà EM cắt AC tại N => N là trọng tâm của \(\Delta ABC\)
\(\Rightarrow NC=\frac{2}{3}CA\Rightarrow NC=2NA\)
+ Ta có \(\Delta AMB=\Delta DMC\Rightarrow AB=CD\)
Xét \(\Delta ACD\)có :
CD + AC > AD ( bđt tam giác ) . Mà CD = AB ; AD = 2AM
=> \(AB+AC>2AM\Leftrightarrow\frac{AB+AC}{2}>AM\)(1)
+ Xét \(\Delta AMB\)có : AM > AB - BM
\(\Delta AMC\)có : AM > AC - CM
=> 2AM > AB + AC - BM - CM
<=> 2AM > AB + AC - (BM +CM )
<=> 2AM > AB + AC - BC
<=> AM > \(\frac{AB+AC-BC}{2}\)(2)
Từ (1), (2) => Điều cần cm trên đề bài .
1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M
a, Chứng minh tam giác ABM = tam giác ACM
b, Biết AB = 20cm ; BC = 24cm . Tính MB và AM
c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K
Chứng minh tam giac AHK cân tại A . Tính MH
2,Cho tam giác ABC vuông tại A có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD
a, Tính BC
b,Chứng minh AB = CD ; AB song song với CD
c,Chứng minh góc BAM > góc CAM
d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE
3, Chứng minh tổng sau không phải là số nguyên :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)
4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)
Cho tam giác ABC có góc A bằng 120 độ đường trung tuyến AM Trên tia đối của tia MB lấy điểm D sao cho MB = MA
a chứng minh rằng tam giác AMC =tam giác DMB
b Chứng minh rằng AC = BD và AC song song BC Tính góc ABD
c so sánh độ dài AM va 1/2 BC
Cho tam giác ABC cân với góc ABC = 120 độ. Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của đường tròn (O) ngoại tiếp tam giác ABC
1) CM tam giác ADC vuông rồi suy ra tỉ số DB/DC
2) CM: \(\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)
3) Đường thẳng DO lần lượt cắt AB,AC tại E và F. Gọi M,N theo thứ tự là trung điểm của AB và AC. Chứng minh các đường thẳng AO; MF; NE đồng quy
1) Theo t/c góc tạo bởi tia tiếp và dây cung: \(\widehat{BCA}=\widehat{BAD}\). Dễ có \(\widehat{BCA}=\widehat{BAC}=30^0\)
\(\Rightarrow\widehat{BAD}=30^0\)\(\Rightarrow\widehat{BAC}+\widehat{BAD}=60^0\Rightarrow\widehat{DAC}=60^0\). Đồng thời \(\widehat{BAC}=\widehat{BAD}\)
=> AB là tia phân giác trong tam giác ADC
Xét \(\Delta\)ADC có: \(\widehat{DAC}=60^0;\widehat{DCA}=\widehat{BCA}=30^0\)
=> \(\Delta\)ADC vuông tại D. Hay \(\Delta\)ADC nửa đều => \(\frac{AD}{AC}=\frac{1}{2}\)
Ta có: AB là phân giác trong tam giác ADC (cmt) \(\Rightarrow\frac{AD}{AC}=\frac{DB}{CB}=\frac{1}{2}\Rightarrow\frac{DB}{DC}=\frac{1}{3}\)
2) Dễ thấy \(\widehat{ABD}=\widehat{BAC}+\widehat{BCA}=60^0\). Xét \(\Delta\)ADB:
\(\widehat{ADB}=90^0\)(cmt); \(\widehat{ABD}=60^0\)=> \(\Delta\)ADB nửa đều => BD = 1/2 AB
Áp dụng ĐL Pytagore cho \(\Delta\)ADB nửa đều:
\(AD^2=AB^2-BD^2=AB^2-\frac{1}{4}.AB^2=\frac{3}{4}.AB^2\)\(\Leftrightarrow AD=\frac{\sqrt{3}}{2}.AB\)
\(\Leftrightarrow\frac{AB}{AD}=\frac{2}{\sqrt{3}}\)(1)
Tương tự với tam giác ANB nửa đều: \(\frac{AB}{AN}=\frac{2}{\sqrt{3}}\Leftrightarrow\frac{AB}{2AN}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)(2)
Cộng (1) với (2) \(\Rightarrow\frac{AB}{AD}+\frac{AB}{AC}=\frac{3}{\sqrt{3}}=\sqrt{3}\Leftrightarrow\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)(đpcm).
3) Gọi giao điểm của NE với AO là S; MF với AO là S'. Ta đi c/m S trùng với S' .
Dễ thấy: \(\widehat{OBC}=180^0-\widehat{ABD}-\widehat{ABN}=60^0\)\(\Rightarrow\widehat{OCB}=60^0\)
Mà \(\widehat{ABD}=60^0\Rightarrow\widehat{OCB}=\widehat{ABD}\). Do 2 góc này đồng vị nên AB // OC
Hay BE // OC \(\Rightarrow\frac{DB}{CB}=\frac{DE}{OE}\)(ĐL Thales) . Mà \(\frac{DB}{CB}=\frac{1}{2}\)(câu b)
\(\Rightarrow\frac{DE}{OE}=\frac{1}{2}\). Lại có: \(\frac{DE}{OE}=\frac{BE}{AE}\Rightarrow\frac{BE}{AE}=\frac{1}{2}\)(Hệ quả ĐL Thales)
Tứ giác ABCO có: AB // OC; AO // OB (Cùng vuông góc AD); AC vuông BO
=> Tứ giác ABCO là hình thoi. N là trung điểm AC => N cũng là trung điểm BO => \(\frac{ON}{BN}=1\)
Nhận thấy \(\Delta\)ABO có: E thuộc AB; N thuộc OB; NE cắt AO ở S
\(\Rightarrow\frac{BE}{AE}.\frac{ON}{BN}.\frac{SA}{SO}=1\)(ĐL Menelaus)
Thay \(\frac{BE}{AE}=\frac{1}{2};\frac{ON}{BN}=1\Rightarrow\frac{SA}{SO}.\frac{1}{2}=1\Leftrightarrow\frac{SA}{SO}=2\Leftrightarrow\frac{SA}{AO}=2\)(*)
Áp dụng hệ quả ĐL Thales: \(\frac{OF}{EF}=\frac{OC}{AE}=\frac{AB}{AE}\)(Do OC=AB)
Lại có: \(\frac{BE}{AE}=\frac{1}{2}\Rightarrow\frac{AB}{AE}=\frac{3}{2}\)\(\Rightarrow\frac{OF}{EF}=\frac{3}{2}\)
Vì \(\frac{BE}{AB}=\frac{1}{3}\Rightarrow\frac{BE}{\frac{1}{2}.AB}=\frac{2}{3}\Rightarrow\frac{BE}{BM}=\frac{2}{3}\Rightarrow\frac{EM}{BM}=\frac{1}{3}\). Mà BM=AM
\(\Rightarrow\frac{EM}{AM}=\frac{1}{3}\). Ta áp dụng ĐL Menelaus với \(\Delta\)AEO:
\(\frac{OF}{EF}.\frac{BE}{EM}.\frac{S'A}{S'O}=1\). Thế \(\frac{EM}{AM}=\frac{1}{3};\frac{OF}{EF}=\frac{3}{2}\)(cmt)
\(\Rightarrow\frac{S'A}{S'O}.\frac{1}{3}.\frac{3}{2}=1\Rightarrow\frac{S'A}{S'O}=2\Rightarrow\frac{S'A}{AO}=2\)(**)
Từ (*) và (**) suy ra \(SA=S'A\). Mà 3 điểm A;S;S' thẳng hàng
Nên S trùng với S' => 3 đường AO;MF;NE gặp nhau tại 1 điểm (đpcm).
Tỉ số \(\frac{DB}{CB}=\frac{1}{2}\) được lấy từ ý 1) nhé, quen tay nên gõ nhầm.
Cho tam giác ABC cân với góc ABC = 120 độ. Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của đường tròn (O) ngoại tiếp tam giác ABC
1) CM tam giác ADC vuông rồi suy ra tỉ số DB/DC
2) CM: \(\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)
3) Đường thẳng DO lần lượt cắt AB,AC tại E và F. Gọi M,N theo thứ tự là trung điểm của AB và AC. Chứng minh các đường thẳng AO;MF;NE đồng quy
Cho tam giác ABC nhọn , trung tuyến AM . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoan thẳng AE vuông góc với AB và AE=AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD=AC
a) Trên tia đối tia MA lấy điểm N sao cho MN=MA . Chứng minh tam giác ADE= tam giác CAN
b) Gọi I là giao điểm của DE và AM. Chứng minh rằng \(\frac{AD^2+IE^2}{DI^2+AE^2}=1\)
1, Chứng minh đẳng thức \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
2, Cho tam giác ABC có AM và AD lần lượt là các đường trung tuyến và phân giác. Đường thẳng qua M và song song với AB cắt AD tại E. Đường thẳng qua D và song song với AC cắt AM tại F. Chứng minh
a. Góc AEC = 90 độ
b. E, F, C thẳng hàng
Bài 1: Tam giác ABC và tam giác A'B'C' có AB=A'B' ; AC=A'C' . Hai góc A và A' bù nhau. Vẽ trung tuyến AM rồi kéo dài 1 đoạn MD= MA . Chứng minh :
a. Góc ABD= góc A'
b. AM= \(\frac{1}{2}\) B'C'